1
|
Sharma R, Uyttersprot S, Baron GV, Denayer JFM. In Situ ZIF-8-Coated Copper Laminate System for Fluid-Phase Adsorptive Separation. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40371637 DOI: 10.1021/acsami.5c04227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
The use of structured adsorbents is emerging as a promising approach for adsorptive separation processes, and several ex situ structuring routes like extrusion, three-dimensional (3D) printing, and coating over substrates have been extensively investigated. However, in situ growth of adsorbents such as metal-organic frameworks (MOFs) on metal laminates remains underexplored. This study introduces a novel laminate system, where aluminum pieces, inspired by the "LEGO" concept, were designed through CNC milling and used to fabricate embossed/dented copper laminates. These laminates were then coated with ZIF-8 crystals (ZIF-8@Cu) via a direct in situ coating method at room temperature, resulting in a 100 μm coating. The system was assembled, packed in a custom-designed column, and evaluated for alcohol recovery from methanol/water and n-butanol/water mixtures. The ZIF-8@Cu laminates exhibited high adsorption capacities: 0.19 gMeOH/gZIF-8, 0.26 gn-BuOH/gZIF-8, and excellent selectivity toward alcohols (αMeOH/H2O = 8.5; αn-BuOH/H2O = 68). Vapor-phase experiments showed dispersive effects in the elution curve, attributed to the intrinsic properties of ZIF-8 (S-shaped equilibrium isotherm) and mass transfer limitation caused by channel nonuniformities and inlet flow maldistribution. For both separation mixtures, the laminate system was regenerated within 2 h via thermal swing adsorption (TSA), thereby exhibiting the combined benefits of microporosity, low-pressure drop, mechanical stability, and efficient heat transfer. The adsorptive properties were further highlighted in liquid-phase separation, where the laminates selectively captured n-butanol from 2.0 wt % aqueous solution and were successfully regenerated via TSA. This study provides proof of concept for the application of MOF-coated metal laminates in multiple adsorption-desorption cycles, thus highlighting their potential for process intensification.
Collapse
Affiliation(s)
- Ravi Sharma
- Chemical Engineering Department, Vrije Universiteit Brussel, Brussels B-1050, Belgium
| | - Shiara Uyttersprot
- Chemical Engineering Department, Vrije Universiteit Brussel, Brussels B-1050, Belgium
| | - Gino V Baron
- Chemical Engineering Department, Vrije Universiteit Brussel, Brussels B-1050, Belgium
| | - Joeri F M Denayer
- Chemical Engineering Department, Vrije Universiteit Brussel, Brussels B-1050, Belgium
| |
Collapse
|
2
|
Gong D, Zhu W, Wu M, Chen C, Chen X, Ye J, He M, Zhao X, Fu Q. A chitosan/MOF hybrid monolith with improved stability and enhanced adsorption performances via a pre-frozen crosslinking route. ENVIRONMENTAL RESEARCH 2025; 271:121095. [PMID: 39947375 DOI: 10.1016/j.envres.2025.121095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/20/2025] [Accepted: 02/09/2025] [Indexed: 02/19/2025]
Abstract
In wastewater remediation by adsorption, three-dimensional porous MOF (metal-organic frame)/polymer hybrid monoliths have been demonstrated to be promising absorbents with effective adsorption and recovery capacities. However, MOF/polymer monoliths often suffer from obvious decrease of porous structures due to large shrinkage during dry at room temperature, weakening the accessibility of active sites for adsorption. Here, a so-called pre-frozen crosslinking process is employed for fabrication of a chitosan/UiO-66 monolith, of which shrinkage is restrained markedly during drying in the air, and the shape of the monolith can be kept intact in 6.3 M acetic acid (CH3COOH), deionized water and 1 M sodium hydroxide (NaOH) for 60 days. Furthermore, the monolith achieves an adsorption capacity of 55.50 mg g-1 for methylchlorophenoxypropionic acid (MCPP) from its aqueous solution, increasing by 55.6% compared with UiO-66 particles, and the maximum adsorption capacity is 256.41 mg g-1.
Collapse
Affiliation(s)
- Die Gong
- College of Material Science and Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Wenli Zhu
- College of Material Science and Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Mingzhu Wu
- College of Material Science and Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Chao Chen
- College of Material Science and Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Xuedan Chen
- College of Material Science and Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China; Key Laboratory of Material Corrosion and Protection of Sichuan Province, Zigong, 643000, China
| | - Jiankang Ye
- College of Material Science and Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Maozheng He
- Sichuan Huayou Zhonglan Energy Co., Ltd., Bazhong, 636475, China
| | - Xin Zhao
- College of Material Science and Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Qingshan Fu
- College of Material Science and Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China; Key Laboratory of Material Corrosion and Protection of Sichuan Province, Zigong, 643000, China.
| |
Collapse
|
3
|
Molavi H, Mirzaei K, Barjasteh M, Rahnamaee SY, Saeedi S, Hassanpouryouzband A, Rezakazemi M. 3D-Printed MOF Monoliths: Fabrication Strategies and Environmental Applications. NANO-MICRO LETTERS 2024; 16:272. [PMID: 39145820 PMCID: PMC11327240 DOI: 10.1007/s40820-024-01487-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/25/2024] [Indexed: 08/16/2024]
Abstract
Metal-organic frameworks (MOFs) have been extensively considered as one of the most promising types of porous and crystalline organic-inorganic materials, thanks to their large specific surface area, high porosity, tailorable structures and compositions, diverse functionalities, and well-controlled pore/size distribution. However, most developed MOFs are in powder forms, which still have some technical challenges, including abrasion, dustiness, low packing densities, clogging, mass/heat transfer limitation, environmental pollution, and mechanical instability during the packing process, that restrict their applicability in industrial applications. Therefore, in recent years, attention has focused on techniques to convert MOF powders into macroscopic materials like beads, membranes, monoliths, gel/sponges, and nanofibers to overcome these challenges.Three-dimensional (3D) printing technology has achieved much interest because it can produce many high-resolution macroscopic frameworks with complex shapes and geometries from digital models. Therefore, this review summarizes the combination of different 3D printing strategies with MOFs and MOF-based materials for fabricating 3D-printed MOF monoliths and their environmental applications, emphasizing water treatment and gas adsorption/separation applications. Herein, the various strategies for the fabrication of 3D-printed MOF monoliths, such as direct ink writing, seed-assisted in-situ growth, coordination replication from solid precursors, matrix incorporation, selective laser sintering, and digital light processing, are described with the relevant examples. Finally, future directions and challenges of 3D-printed MOF monoliths are also presented to better plan future trajectories in the shaping of MOF materials with improved control over the structure, composition, and textural properties of 3D-printed MOF monoliths.
Collapse
Affiliation(s)
- Hossein Molavi
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Zanjan, 45137-66731, Iran.
| | - Kamyar Mirzaei
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Mahdi Barjasteh
- Center for Nano-Science and Nanotechnology, Institute for Convergence Science & Technology, Sharif University of Technology, Tehran, 15614, Iran
| | - Seyed Yahya Rahnamaee
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave., P.O.Box 15875-4413, Tehran, Iran
| | - Somayeh Saeedi
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Zanjan, 45137-66731, Iran
| | | | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, P.O. Box 3619995161, Iran.
| |
Collapse
|
4
|
Liu X, Zhao D, Wang J. Challenges and Opportunities in Preserving Key Structural Features of 3D-Printed Metal/Covalent Organic Framework. NANO-MICRO LETTERS 2024; 16:157. [PMID: 38512503 PMCID: PMC10957829 DOI: 10.1007/s40820-024-01373-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/01/2024] [Indexed: 03/23/2024]
Abstract
Metal-organic framework (MOF) and covalent organic framework (COF) are a huge group of advanced porous materials exhibiting attractive and tunable microstructural features, such as large surface area, tunable pore size, and functional surfaces, which have significant values in various application areas. The emerging 3D printing technology further provides MOF and COFs (M/COFs) with higher designability of their macrostructure and demonstrates large achievements in their performance by shaping them into advanced 3D monoliths. However, the currently available 3D printing M/COFs strategy faces a major challenge of severe destruction of M/COFs' microstructural features, both during and after 3D printing. It is envisioned that preserving the microstructure of M/COFs in the 3D-printed monolith will bring a great improvement to the related applications. In this overview, the 3D-printed M/COFs are categorized into M/COF-mixed monoliths and M/COF-covered monoliths. Their differences in the properties, applications, and current research states are discussed. The up-to-date advancements in paste/scaffold composition and printing/covering methods to preserve the superior M/COF microstructure during 3D printing are further discussed for the two types of 3D-printed M/COF. Throughout the analysis of the current states of 3D-printed M/COFs, the expected future research direction to achieve a highly preserved microstructure in the 3D monolith is proposed.
Collapse
Affiliation(s)
- Ximeng Liu
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - John Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore.
- National University of Singapore (Chongqing) Research Institute, Chongqing, 401123, People's Republic of China.
| |
Collapse
|
5
|
Abdelhamid HN, Sultan S, Mathew AP. 3D printing of cellulose/leaf-like zeolitic imidazolate frameworks (CelloZIF-L) for adsorption of carbon dioxide (CO 2) and heavy metal ions. Dalton Trans 2023; 52:2988-2998. [PMID: 36779352 DOI: 10.1039/d2dt04168e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Metal-organic frameworks (MOFs) have advanced several technologies. However, it is difficult to market MOFs without processing them into a commercialized structure, causing an unnecessary delay in the material's use. Herein, three-dimensional (3D) printing of cellulose/leaf-like zeolitic imidazolate frameworks (ZIF-L), denoted as CelloZIF-L, is reported via direct ink writing (DIW, robocasting). Formulating CelloZIF-L into 3D objects can dramatically affect the material's properties and, consequently, its adsorption efficiency. The 3D printing process of CelloZIF-L is simple and can be applied via direct printing into a solution of calcium chloride. The synthesis procedure enables the formation of CelloZIF-L with a ZIF content of 84%. 3D printing enables the integration of macroscopic assembly with microscopic properties, i.e., the formation of the hierarchical structure of CelloZIF-L with different shapes, such as cubes and filaments, with 84% loading of ZIF-L. The materials adsorb carbon dioxide (CO2) and heavy metals. 3D CelloZIF-L exhibited a CO2 adsorption capacity of 0.64-1.15 mmol g-1 at 1 bar (0 °C). The materials showed Cu2+ adsorption capacities of 389.8 ± 14-554.8 ± 15 mg g-1. They displayed selectivities of 86.8%, 6.7%, 2.4%, 0.93%, 0.61%, and 0.19% toward Fe3+, Al3+, Co2+, Cu2+, Na+, and Ca2+, respectively. The simple 3D printing procedure and the high adsorption efficiencies reveal the promising potential of our materials for industrial applications.
Collapse
Affiliation(s)
- Hani Nasser Abdelhamid
- Division of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, Stockholm, SE-10691, Sweden. .,Advanced Multifunctional Materials Laboratory, Department of Chemistry, Faculty of Science, Assiut University, Assiut, 71515, Egypt.,Nanotechnology Research Centre (NTRC), The British University in Egypt (BUE), El-Shorouk City, Suez Desert Road, P.O. Box 43, Cairo 11837, Egypt
| | - Sahar Sultan
- Division of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, Stockholm, SE-10691, Sweden.
| | - Aji P Mathew
- Division of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16 C, Stockholm, SE-10691, Sweden.
| |
Collapse
|
6
|
Pérez-Botella E, Valencia S, Rey F. Zeolites in Adsorption Processes: State of the Art and Future Prospects. Chem Rev 2022; 122:17647-17695. [PMID: 36260918 PMCID: PMC9801387 DOI: 10.1021/acs.chemrev.2c00140] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Zeolites have been widely used as catalysts, ion exchangers, and adsorbents since their industrial breakthrough in the 1950s and continue to be state-of the-art adsorbents in many separation processes. Furthermore, their properties make them materials of choice for developing and emerging separation applications. The aim of this review is to put into context the relevance of zeolites and their use and prospects in adsorption technology. It has been divided into three different sections, i.e., zeolites, adsorption on nanoporous materials, and chemical separations by zeolites. In the first section, zeolites are explained in terms of their structure, composition, preparation, and properties, and a brief review of their applications is given. In the second section, the fundamentals of adsorption science are presented, with special attention to its industrial application and our case of interest, which is adsorption on zeolites. Finally, the state-of-the-art relevant separations related to chemical and energy production, in which zeolites have a practical or potential applicability, are presented. The replacement of some of the current separation methods by optimized adsorption processes using zeolites could mean an improvement in terms of sustainability and energy savings. Different separation mechanisms and the underlying adsorption properties that make zeolites interesting for these applications are discussed.
Collapse
Affiliation(s)
| | | | - Fernando Rey
- . Phone: +34 96 387 78 00.
Fax: +34 96 387 94
44
| |
Collapse
|
7
|
Fonseca J, Gong T. Fabrication of metal-organic framework architectures with macroscopic size: A review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
8
|
Rosseau LR, Schinkel MA, Roghair I, van Sint Annaland M. Experimental Quantification of Gas Dispersion in 3D-Printed Logpile Structures Using a Noninvasive Infrared Transmission Technique. ACS ENGINEERING AU 2022; 2:236-247. [PMID: 35781935 PMCID: PMC9242522 DOI: 10.1021/acsengineeringau.1c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 12/02/2022]
Abstract
![]()
3D-printed catalyst
structures have the potential to broaden reactor
operating windows. However, the hydrodynamic aspects associated with
these novel catalyst structures have not yet been quantified in detail.
This work applies a recently introduced noninvasive, instantaneous,
whole-field concentration measurement technique based on infrared
transmission to quantify the rate of transverse gas dispersion in
3D-printed logpile structures. Twenty-two structural variations have
been investigated at various operating conditions, and the measured
transverse gas dispersion has been correlated to the Péclet
number and the structures’ porosity and feature size. It is
shown that staggered configurations of these logpile structures offer
significantly more tunability of the dispersion behavior compared
to straight structures. The proposed correlations can be used to facilitate
considerations of reactor design and operating windows.
Collapse
Affiliation(s)
- Leon R.S. Rosseau
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600MB, The Netherlands
| | - Merlijn A.M.R. Schinkel
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600MB, The Netherlands
| | - Ivo Roghair
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600MB, The Netherlands
| | - Martin van Sint Annaland
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600MB, The Netherlands
| |
Collapse
|
9
|
Beckwée EJ, Wittevrongel GR, Claessens B. Comparing column dynamics in the liquid and vapor phase adsorption of biobutanol on an activated carbon monolith. ADSORPTION 2022. [DOI: 10.1007/s10450-022-00362-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Mennitto R, Sharma I, Brandani S. Extruded Monoliths for Gas Separation Processes: Height Equivalent to a Theoretical Plate and Pressure Drop Correlations. AIChE J 2022. [DOI: 10.1002/aic.17650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Ishan Sharma
- School of Engineering University of Edinburgh Edinburgh UK
| | | |
Collapse
|
11
|
Rosseau LR, Middelkoop V, Willemsen HA, Roghair I, van Sint Annaland M. Review on Additive Manufacturing of Catalysts and Sorbents and the Potential for Process Intensification. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.834547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Additive manufacturing of catalyst and sorbent materials promises to unlock large design freedom in the structuring of these materials, and could be used to locally tune porosity, shape and resulting parameters throughout the reactor along both the axial and transverse coordinates. This contrasts catalyst structuring by conventional methods, which yields either very dense randomly packed beds or very open cellular structures. Different 3D-printing processes for catalytic and sorbent materials exist, and the selection of an appropriate process, taking into account compatible materials, porosity and resolution, may indeed enable unbounded options for geometries. In this review, recent efforts in the field of 3D-printing of catalyst and sorbent materials are discussed. It will be argued that these efforts, whilst promising, do not yet exploit the full potential of the technology, since most studies considered small structures that are very similar to structures that can be produced through conventional methods. In addition, these studies are mostly motivated by chemical and material considerations within the printing process, without explicitly striving for process intensification. To enable value-added application of 3D-printing in the chemical process industries, three crucial requirements for increased process intensification potential will be set out: i) the production of mechanically stable structures without binders; ii) the introduction of local variations throughout the structure; and iii) the use of multiple materials within one printed structure.
Collapse
|
12
|
Pakzati M, Abedini H, Hamoule T, Shariati A. Equilibrium and dynamic investigation of butanol adsorption from acetone–butanol–ethanol (ABE) model solution using a vine shoot based activated carbon. ADSORPTION 2021. [DOI: 10.1007/s10450-021-00345-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Mendes DN, Gaspar A, Ferreira I, Mota JP, Ribeiro RP. 3D-printed hybrid zeolitic/carbonaceous electrically conductive adsorbent structures. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.08.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Lawson S, Li X, Thakkar H, Rownaghi AA, Rezaei F. Recent Advances in 3D Printing of Structured Materials for Adsorption and Catalysis Applications. Chem Rev 2021; 121:6246-6291. [PMID: 33947187 DOI: 10.1021/acs.chemrev.1c00060] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Porous solids in the form of adsorbents and catalysts play a crucial role in various industrially important chemical, energy, and environmental processes. Formulating them into structured configurations is a key step toward their scale up and successful implementation at the industrial level. Additive manufacturing, also known as 3D printing, has emerged as an invaluable platform for shape engineering porous solids and fabricating scalable configurations for use in a wide variety of separation and reaction applications. However, formulating porous materials into self-standing configurations can dramatically affect their performance and consequently the efficiency of the process wherein they operate. Toward this end, various research groups around the world have investigated the formulation of porous adsorbents and catalysts into structured scaffolds with complex geometries that not only exhibit comparable or improved performance to that of their powder parents but also address the pressure drop and attrition issues of traditional configurations. In this comprehensive review, we summarize the recent advances and current challenges in the field of adsorption and catalysis to better guide the future directions in shape engineering solid materials with a better control on composition, structure, and properties of 3D-printed adsorbents and catalysts.
Collapse
Affiliation(s)
- Shane Lawson
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| | - Xin Li
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| | - Harshul Thakkar
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| | - Ali A Rownaghi
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| | - Fateme Rezaei
- Department of Chemical & Biochemical Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409-1230, United States
| |
Collapse
|
15
|
Ahmadi M, Ansaloni L, Hillestad M, Deng L. Solvent Regeneration by Thermopervaporation in Subsea Natural Gas Dehydration: An Experimental and Simulation Study. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mahdi Ahmadi
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim N-7491, Norway
| | - Luca Ansaloni
- Department of Sustainable Energy Technology, SINTEF Industry, Oslo 0373, Norway
| | - Magne Hillestad
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim N-7491, Norway
| | - Liyuan Deng
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim N-7491, Norway
| |
Collapse
|
16
|
Davis JJ, Foster SW, Grinias JP. Low-cost and open-source strategies for chemical separations. J Chromatogr A 2021; 1638:461820. [PMID: 33453654 PMCID: PMC7870555 DOI: 10.1016/j.chroma.2020.461820] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/18/2022]
Abstract
In recent years, a trend toward utilizing open access resources for laboratory research has begun. Open-source design strategies for scientific hardware rely upon the use of widely available parts, especially those that can be directly printed using additive manufacturing techniques and electronic components that can be connected to low-cost microcontrollers. Open-source software eliminates the need for expensive commercial licenses and provides the opportunity to design programs for specific needs. In this review, the impact of the "open-source movement" within the field of chemical separations is described, primarily through a comprehensive look at research in this area over the past five years. Topics that are covered include general laboratory equipment, sample preparation techniques, separations-based analysis, detection strategies, electronic system control, and software for data processing. Remaining hurdles and possible opportunities for further adoption of open-source approaches in the context of these separations-related topics are also discussed.
Collapse
Affiliation(s)
- Joshua J Davis
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, United States
| | - Samuel W Foster
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, United States
| | - James P Grinias
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, NJ 08028, United States.
| |
Collapse
|
17
|
Maldonado N, Amo-Ochoa P. New Promises and Opportunities in 3D Printable Inks Based on Coordination Compounds for the Creation of Objects with Multiple Applications. Chemistry 2020; 27:2887-2907. [PMID: 32894574 DOI: 10.1002/chem.202002259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/03/2020] [Indexed: 12/17/2022]
Abstract
This review focuses on the usefulness of coordination bonds to create 3D printable inks and shows how the union of chemistry and 3D technology contributes to new scientific advances, by allowing amorphous or polycrystalline solids to be transformed into objects with the desired shape for successful applications. The review clearly shows how there has been considerable increase in the manufacture of objects based on the combination of organic matrices and coordination compounds. These coordination compounds are usually homogeneously dispersed within the matrix, anchored onto a proper support or coating the printed object, without destroying their unique properties. Advances are so rapid that today it is already possible to 3D print objects made exclusively from coordination compounds without additives. The new printable inks are made mainly with nanoscale nonporous coordination polymers, metal-organic gels, or metal-organic frameworks. The highly dynamic coordination bond allows the creation of objects, which respond to stimuli, that can act as sensors and be used for drug delivery. In addition, the combination of metal-organic frameworks with 3D printing allows the adsorption or selective capacity of the object to be increased, relative to that of the original compound, which is useful in energy storage, gas separation, or water pollutant elimination. Furthermore, the presence of the metal ion can give them new properties, such as luminescence, that are useful for application in sensors or anticounterfeiting. Technological advances, the combination of various printing techniques, and the properties of coordination bonds lead to the creation of surprising, new, printable inks and objects with highly complex shapes that will close the gap between academia and industry for research into coordination compounds.
Collapse
Affiliation(s)
- Noelia Maldonado
- Department of Inorganic Chemistry, Autonomous University of Madrid, 28049, Madrid, Spain
| | - Pilar Amo-Ochoa
- Department of Inorganic Chemistry, Autonomous University of Madrid, 28049, Madrid, Spain.,Institute for Advanced Research in Chemistry (IADCHEM), Autonomous University of Madrid, 28049, Madrid, Spain
| |
Collapse
|
18
|
Verougstraete B, Schuddinck D, Lefevere J, Baron GV, Denayer JFM. A 3D-Printed Zeolitic Imidazolate Framework-8 Monolith For Flue- and Biogas Separations by Adsorption: Influence of Flow Distribution and Process Parameters. FRONTIERS IN CHEMICAL ENGINEERING 2020. [DOI: 10.3389/fceng.2020.589686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
19
|
Abstract
AbstractWe present the development and application of X-ray Computed Tomography (CT) for the determination of the adsorption properties of microporous adsorbents and the study of breakthrough experiments in a laboratory fixed-bed adsorption column. Using the model system $$\text {CO}_2/\text {helium}$$
CO
2
/
helium
on activated carbon, equilibrium and dynamic adsorption/desorption measurements by X-ray CT are described, and the results are successfully compared to those obtained from conventional methods, including the application of a one-dimensional dynamic column breakthrough model. The study demonstrates the practical feasibility of applying X-ray CT to measure internal and transient concentration profiles in adsorbent systems on the length-scales from a single adsorbent pellet to a packed column.
Collapse
|