1
|
Zhang S, Chu G, Wang S, Ma J, Wang C. Base-Free Oxidation of HMF to FDCA over Ru/Cu-Co-O·MgO under Aqueous Conditions. Molecules 2024; 29:3213. [PMID: 38999165 PMCID: PMC11243489 DOI: 10.3390/molecules29133213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
The copper-cobalt metal oxide composite magnesium oxide catalyst loaded with Ru has achieved the aerobic oxidation of 5-hydroxymethylfurfural (HMF) to the bio-based polyester monomer 2,5-furandicarboxylic acid (FDCA) under base-free conditions. Several Ru/Cu-Co-O·MgO catalysts were prepared, with Cu-Co-O being a combination of CuO and Co3O4. The catalyst's activity was boosted by the synergistic interaction between copper and cobalt, as well as an optimal copper-to-cobalt molar ratio. Optimal catalytic activity was observed in the Ru4/Cu1-Co1-O·MgO catalyst, loaded with 4 wt% Ru when copper-to-cobalt molar ratio of 1:1 and magnesium oxide compounding amount of 6 mmol were employed. The inclusion of MgO and the load of Ru not only expanded the specific surface area of the catalyst but also heightened its basicity. Additionally, the presence of loaded Ru improved the catalyst's reducibility at low temperatures. In aqueous solution under oxygen pressure, the conversion rate of HMF achieved 100%, and the yield of FDCA was 86.1%. After five reaction cycles, examining the catalyst and solution revealed that Ru nanoparticles resisted leaching or oxidation, and MgO exhibited only slight dissolution. The green separation of the product was achieved using semi-preparative liquid chromatography, selectively collecting the FDCA-containing solution by exploiting variations in interactions between solutes and the stationary/mobile phases. The subsequent steps involved rotary evaporation and drying, resulting in FDCA powder with a purity exceeding 99%. Notably, this approach eliminated the need to introduce concentrated hydrochloric acid into the system for FDCA separation, providing a novel method for synthesising powdered FDCA.
Collapse
Affiliation(s)
- Shuang Zhang
- Institute of Petrochemical Technology, Jilin Institute of Chemical Technology, 45 Chengde Street, Jilin 132022, China
| | - Guoning Chu
- Institute of Petrochemical Technology, Jilin Institute of Chemical Technology, 45 Chengde Street, Jilin 132022, China
| | - Sai Wang
- Institute of Petrochemical Technology, Jilin Institute of Chemical Technology, 45 Chengde Street, Jilin 132022, China
| | - Ji Ma
- Institute of Petrochemical Technology, Jilin Institute of Chemical Technology, 45 Chengde Street, Jilin 132022, China
| | - Chengqian Wang
- Institute of Petrochemical Technology, Jilin Institute of Chemical Technology, 45 Chengde Street, Jilin 132022, China
| |
Collapse
|
2
|
Wang X, Guo X, Wang X, Li C, Wang S, Li H, Gao Y, Li Y, Wang J, Xu H. Conversion of 5-hydroxymethylfurfural to furan-2,5-dicarboxylic acid by a simple and metal-free catalytic system. RSC Adv 2023; 13:13819-13823. [PMID: 37181510 PMCID: PMC10170353 DOI: 10.1039/d3ra01104f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/20/2023] [Indexed: 05/16/2023] Open
Abstract
A simple and metal-free catalytic system composed of NaOtBu/DMF and an O2 balloon efficiently converted 5-hydroxymethylfurfural (5-HMF) to furan-2,5-dicarboxylic acid with an 80.85% yield. 5-HMF analogues and various types of alcohols were also transformed to their corresponding acids in satisfactory to excellent yield by this catalytic system.
Collapse
Affiliation(s)
- Xue Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University Harbin China
| | - Xinyuan Guo
- School of Science, Qiongtai Normal University Haikou 571127 China
| | - Xinmei Wang
- School of Science, Qiongtai Normal University Haikou 571127 China
| | - Chi Li
- School of Science, Qiongtai Normal University Haikou 571127 China
| | - Shanjun Wang
- School of Science, Qiongtai Normal University Haikou 571127 China
| | - Han Li
- School of Science, Qiongtai Normal University Haikou 571127 China
| | - Yan'an Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical, Island Resources, Hainan University Haikou 570228 China
| | - Yiying Li
- College of Basic Medicine and Life Sciences, Hainan Medical University Haikou China
| | - Jinhui Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University Harbin China
- Key Laboratory of Child Cognition and Behavior Development of Hainan Province, Qiongtai Normal University Haikou China
| | - Huanjun Xu
- School of Science, Qiongtai Normal University Haikou 571127 China
- Key Laboratory of Child Cognition and Behavior Development of Hainan Province, Qiongtai Normal University Haikou China
| |
Collapse
|
3
|
Wei Z, Li W, Yuan F, Sun W, Zhao L. Kinetic Modeling of Homogenous Catalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zange Wei
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Wenhao Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Fang Yuan
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Weizhen Sun
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai200237, China
| | - Ling Zhao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai200237, China
- School of Chemistry & Chemical Engineering, XinJiang University, Urumqi830046, China
| |
Collapse
|
4
|
Xu H, Li X, Hu W, Yu Z, Zhou H, Zhu Y, Lu L, Si C. Research Progress of Highly Efficient Noble Metal Catalysts for the Oxidation of 5-Hydroxymethylfurfural. CHEMSUSCHEM 2022; 15:e202200352. [PMID: 35575041 DOI: 10.1002/cssc.202200352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/11/2022] [Indexed: 06/15/2023]
Abstract
5-hydroxymethylfurfural (HMF) is considered to be one of the most pivotal multifunctional biomass platform chemicals. This Review discusses recent advances in catalytic oxidation of HMF towards high-value products. The reaction mechanism of different noble metals and the path of HMF oxidation to high-value products have been deeply investigated in the noble metal catalytic system. The reaction mechanisms of different noble metals and HMF conversion paths were compared in detail. Moreover, the factors affecting the performance of different noble metal catalysts were summarized. Finally, effective strategies were put forward to improve the catalytic performance of noble metal catalysts. The purpose is to provide a valuable reference for the academic research on the preparation of oxidation products from biomass-based HMF and the industrial application of noble metal catalysts.
Collapse
Affiliation(s)
- Haocheng Xu
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
- School of Agriculture, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xiaoyun Li
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
- School of Agriculture, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Wenxuan Hu
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
- School of Agriculture, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zhihao Yu
- Department of Chemistry and Environmental Science, School of Science, Tibet University, Lhasa, 850000, P. R. China
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Huanran Zhou
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
- School of Agriculture, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yameng Zhu
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
- School of Agriculture, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Lefu Lu
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
- School of Agriculture, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| |
Collapse
|
5
|
Totaro G, Sisti L, Marchese P, Colonna M, Romano A, Gioia C, Vannini M, Celli A. Current Advances in the Sustainable Conversion of 5-Hydroxymethylfurfural into 2,5-Furandicarboxylic Acid. CHEMSUSCHEM 2022; 15:e202200501. [PMID: 35438242 PMCID: PMC9400982 DOI: 10.1002/cssc.202200501] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/15/2022] [Indexed: 06/14/2023]
Abstract
2,5-Furandicarboxylic acid (FDCA) is currently considered one of the most relevant bio-sourced building blocks, representing a fully sustainable competitor for terephthalic acid as well as the main component in green polymers such as poly(ethylene 2,5-furandicarboxylate) (PEF). The oxidation of biobased 5-hydroxymethylfurfural (HMF) represents the most straightforward approach to obtain FDCA, thus attracting the attention of both academia and industries, as testified by Avantium with the creation of a new plant expected to produce 5000 tons per year. Several approaches allow the oxidation of HMF to FDCA. Metal-mediated homogeneous and heterogeneous catalysis, metal-free catalysis, electrochemical approaches, light-mediated procedures, as well as biocatalytic processes share the target to achieve FDCA in high yield and mild conditions. This Review aims to give an up-to-date overview of the current developments in the main synthetic pathways to obtain FDCA from HMF, with a specific focus on process sustainability.
Collapse
Affiliation(s)
- Grazia Totaro
- Department of CivilChemical Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Laura Sisti
- Department of CivilChemical Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Paola Marchese
- Department of CivilChemical Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Martino Colonna
- Department of CivilChemical Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Angela Romano
- Department of CivilChemical Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Claudio Gioia
- Department of CivilChemical Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Micaela Vannini
- Department of CivilChemical Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Annamaria Celli
- Department of CivilChemical Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| |
Collapse
|
6
|
Priya B, Kumar A, Dostagir SKNHM, Shrotri A, Singh SK. Catalytic hydrogenation of biomass‐derived furoic acid to tetrahydrofuroic acid derivatives over Pd/CoOx catalyst in water. ChemCatChem 2022. [DOI: 10.1002/cctc.202200590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bhanu Priya
- Indian Institute of Technology Indore Chemistry 453552 Indore INDIA
| | - Ankit Kumar
- Indian Institute of Technology Indore Chemistry 453552 Indore INDIA
| | | | - Abhijit Shrotri
- Hokkaido University: Hokkaido Daigaku Institute for Catalysis 0010021 Sapporo JAPAN
| | - Sanjay Kumar Singh
- Indian Institute of Technology Indore Chemistry SimrolKhandwa Road 453552 Indore INDIA
| |
Collapse
|
7
|
Biradar Tamboli AT, Kirdant SP, Jadhav VH. Metal-free approach towards efficient synthesis of FDCA using a p-toluene sulfonic acid ( p-TSA)-derived heterogeneous solid acid catalyst and oxone over two steps from HMF, fructose and glucose. NEW J CHEM 2022. [DOI: 10.1039/d2nj01207c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, a metal-free approach towards synthesis of 2,5-furandicarboxylic acid (FDCA) from HMF, fructose and glucose is reported over two steps using p-TSA–POM solid acid catalyst in the first step and oxone as an oxidant in the second step.
Collapse
Affiliation(s)
- Asma T. Biradar Tamboli
- Division of Catalysis & Inorganic Chemistry, CSIR-National Chemical Laboratory, Dr Homi-Bhabha Road, Pashan, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Swapnali P. Kirdant
- Division of Catalysis & Inorganic Chemistry, CSIR-National Chemical Laboratory, Dr Homi-Bhabha Road, Pashan, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vrushali H. Jadhav
- Division of Catalysis & Inorganic Chemistry, CSIR-National Chemical Laboratory, Dr Homi-Bhabha Road, Pashan, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
8
|
Abstract
Converting biomass into high value-added compounds has attracted great attention for solving fossil fuel consumption and global warming. 5-Hydroxymethylfurfural (HMF) has been considered as a versatile biomass-derived building block that can be used to synthesize a variety of sustainable fuels and chemicals. Among these derivatives, 2,5-furandicarboxylic acid (FDCA) is a desirable alternative to petroleum-derived terephthalic acid for the synthesis of biodegradable polyesters. Herein, to fully understand the current development of the catalytic conversion of biomass to FDCA, a comprehensive review of the catalytic conversion of cellulose biomass to HMF and the oxidation of HMF to FDCA is presented. Moreover, future research directions and general trends of using biomass for FDCA production are also proposed.
Collapse
|
9
|
Wu S, Wang Y, Cao Q, Zhao Q, Fang W. Efficient Imine Formation by Oxidative Coupling at Low Temperature Catalyzed by High-Surface-Area Mesoporous CeO 2 with Exceptional Redox Property. Chemistry 2021; 27:3019-3028. [PMID: 33037678 DOI: 10.1002/chem.202003915] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/30/2020] [Indexed: 11/09/2022]
Abstract
High-surface-area mesoporous CeO2 (hsmCeO2 ) was prepared by a facile organic-template-induced homogeneous precipitation process and showed excellent catalytic activity in imine synthesis in the absence of base from primary alcohols and amines in air atmosphere at low temperature. For comparison, ordinary CeO2 and hsmCeO2 after different thermal treatments were also investigated. XRD, N2 physisorption, UV-Raman, H2 temperature-programmed reduction, O2 temperature-programmed desorption, EPR spectroscopy, and X-ray photoelectron spectroscopy were used to unravel the structural and redox properties. The hsmCeO2 calcined at 400 °C shows the highest specific surface area (158 m2 g-1 ), the highest fraction of surface coordinatively unsaturated Ce3+ ions (18.2 %), and the highest concentration of reactive oxygen vacancies (2.4×1015 spins g-1 ). In the model reaction of oxidative coupling of benzyl alcohol and aniline, such an exceptional redox property of the hsmCeO2 catalyst can boost benzylideneaniline formation (2.75 and 5.55 mmol g ceria - 1 h-1 based on >99 % yield at 60 and 80 °C, respectively) in air with no base additives. It can also work effectively at a temperature of 30 °C and in gram-scale synthesis. These are among the best results for all benchmark ceria catalysts in the literature. Moreover, the hsmCeO2 catalyst shows a wide scope towards primary alcohols and amines with good to excellent yield of imines. The influence of reaction parameters, the reusability of the catalyst, and the reaction mechanism were investigated.
Collapse
Affiliation(s)
- Shipeng Wu
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Functional Molecules Analysis and Biotransformation, Key Laboratory of Universities in Yunnan Province, Yunnan University, 2 North Cuihu Road, 650091, Kunming, P. R. China
| | - Yinghao Wang
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Functional Molecules Analysis and Biotransformation, Key Laboratory of Universities in Yunnan Province, Yunnan University, 2 North Cuihu Road, 650091, Kunming, P. R. China
| | - Qiue Cao
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Functional Molecules Analysis and Biotransformation, Key Laboratory of Universities in Yunnan Province, Yunnan University, 2 North Cuihu Road, 650091, Kunming, P. R. China.,National Demonstration Center for Experimental Chemistry and, Chemical Engineering Education, Yunnan University, 650091, Kunming, P. R. China
| | - Qihua Zhao
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Functional Molecules Analysis and Biotransformation, Key Laboratory of Universities in Yunnan Province, Yunnan University, 2 North Cuihu Road, 650091, Kunming, P. R. China
| | - Wenhao Fang
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Functional Molecules Analysis and Biotransformation, Key Laboratory of Universities in Yunnan Province, Yunnan University, 2 North Cuihu Road, 650091, Kunming, P. R. China.,National Demonstration Center for Experimental Chemistry and, Chemical Engineering Education, Yunnan University, 650091, Kunming, P. R. China
| |
Collapse
|
10
|
Wu S, Wei K, Fang W. Influence of Calcination on Mesoporous Mn
1
Zr
0.5
O
y
Solid Solution in Oxidative Coupling Catalysis for Benzylideneaniline Formation. ChemistrySelect 2021. [DOI: 10.1002/slct.202004509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shipeng Wu
- School of Chemical Science and Technology Key Laboratory of Medicinal Chemistry for Natural Resource – Ministry of Education Yunnan University 2 North Cuihu Road 650091 Kunming China
| | - Kun Wei
- School of Chemical Science and Technology Key Laboratory of Medicinal Chemistry for Natural Resource – Ministry of Education Yunnan University 2 North Cuihu Road 650091 Kunming China
| | - Wenhao Fang
- School of Chemical Science and Technology Key Laboratory of Medicinal Chemistry for Natural Resource – Ministry of Education Yunnan University 2 North Cuihu Road 650091 Kunming China
| |
Collapse
|
11
|
Sun W, Lin P, Tang Q, Jing F, Cao Q, Fang W. Sustainable synthesis of vanillin through base-free selective oxidation using synergistic AgPd nanoparticles loaded on ZrO 2. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01526e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sustainable synthesis of vanillin was realized over a synergistic AgPd/ZrO2 catalyst through the base-free selective oxidation of vanillyl alcohol.
Collapse
Affiliation(s)
- Weixiao Sun
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource – Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, 2 North Cuihu Road, 650091 Kunming, China
| | - Peng Lin
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource – Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, 2 North Cuihu Road, 650091 Kunming, China
| | - Qinghu Tang
- School of Chemistry and Chemical Engineering, Henan Normal University, 453007 Xinxiang, China
| | - Fangli Jing
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, 610500 Chengdu, China
| | - Qiue Cao
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource – Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, 2 North Cuihu Road, 650091 Kunming, China
| | - Wenhao Fang
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource – Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, 2 North Cuihu Road, 650091 Kunming, China
| |
Collapse
|
12
|
Wan X, Tang N, Xie Q, Zhao S, Zhou C, Dai Y, Yang Y. A CuMn2O4 spinel oxide as a superior catalyst for the aerobic oxidation of 5-hydroxymethylfurfural toward 2,5-furandicarboxylic acid in aqueous solvent. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01649g] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A CuMn2O4 spinel oxide was prepared via a freezing-assisted sol–gel method and used in the aerobic oxidation of 5-hydroxylmethylfurfural (HMF) toward 2,5-furandicarboxylic acid (FDCA) in aqueous solvent.
Collapse
Affiliation(s)
- Xiaoyue Wan
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Nannan Tang
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Qi Xie
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Shuangyan Zhao
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Chunmei Zhou
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Yihu Dai
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| | - Yanhui Yang
- Institute of Advanced Synthesis
- School of Chemistry and Molecular Engineering
- Jiangsu National Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- Nanjing 211816
| |
Collapse
|
13
|
Wu S, Zhang H, Cao Q, Zhao Q, Fang W. Efficient imine synthesis via oxidative coupling of alcohols with amines in an air atmosphere using a mesoporous manganese–zirconium solid solution catalyst. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02288h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mesoporous Mn1ZrxOy solid solution enables efficient imine formation from catalytic oxidative coupling of alcohols and amines at low temperature in an air atmosphere without base additives.
Collapse
Affiliation(s)
- Shipeng Wu
- School of Chemical Science and Technology
- Key Laboratory of Medicinal Chemistry for Natural Resource – Ministry of Education
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province
- Yunnan University
- 650091 Kunming
| | - Hao Zhang
- School of Chemical Science and Technology
- Key Laboratory of Medicinal Chemistry for Natural Resource – Ministry of Education
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province
- Yunnan University
- 650091 Kunming
| | - Qiue Cao
- School of Chemical Science and Technology
- Key Laboratory of Medicinal Chemistry for Natural Resource – Ministry of Education
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province
- Yunnan University
- 650091 Kunming
| | - Qihua Zhao
- School of Chemical Science and Technology
- Key Laboratory of Medicinal Chemistry for Natural Resource – Ministry of Education
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province
- Yunnan University
- 650091 Kunming
| | - Wenhao Fang
- School of Chemical Science and Technology
- Key Laboratory of Medicinal Chemistry for Natural Resource – Ministry of Education
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province
- Yunnan University
- 650091 Kunming
| |
Collapse
|
14
|
Fu J, Zhang Z, Ren Q. The Future of Biomass Utilization Technologies Special Issue Editorial. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jie Fu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard North, Quzhou 324000, China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard North, Quzhou 324000, China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard North, Quzhou 324000, China
| |
Collapse
|
15
|
Sun W, Wu S, Lu Y, Wang Y, Cao Q, Fang W. Effective Control of Particle Size and Electron Density of Pd/C and Sn-Pd/C Nanocatalysts for Vanillin Production via Base-Free Oxidation. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01849] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Weixiao Sun
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource-Ministry of Education, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, 2 North Cuihu Road, Kunming 650091, People’s Republic of China
| | - Shipeng Wu
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource-Ministry of Education, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, 2 North Cuihu Road, Kunming 650091, People’s Republic of China
| | - Yaowei Lu
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource-Ministry of Education, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, 2 North Cuihu Road, Kunming 650091, People’s Republic of China
| | - Yongxing Wang
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource-Ministry of Education, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, 2 North Cuihu Road, Kunming 650091, People’s Republic of China
| | - Qiue Cao
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource-Ministry of Education, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, 2 North Cuihu Road, Kunming 650091, People’s Republic of China
- National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming 650091, People’s Republic of China
| | - Wenhao Fang
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource-Ministry of Education, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, 2 North Cuihu Road, Kunming 650091, People’s Republic of China
- National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, Kunming 650091, People’s Republic of China
| |
Collapse
|