1
|
V V, K J, Alsawalha M, Zhang Z, Fu ML, Yuan B. Rational design of full-spectrum visible-light-responsive bimetallic sulfide Bi 2S 3/CoS 2 composites for high-efficiency photocatalytic degradation of naproxen and bacterial inactivation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119246. [PMID: 37820430 DOI: 10.1016/j.jenvman.2023.119246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/16/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
Photocatalytic water decontamination has emerged as a highly promising technology for efficient and rapid water treatment, harnessing sustainable solar energy as its driving force. In this study, we prepared visible-light active Bi2S3/CoS2 composites for the degradation of naproxen (NPX) and the inactivation of Escherichia coli (E. coli). The homogeneous dispersion of CoS2 was stably integrated with Bi2S3, resulting in a significant enhancement of the specific surface area, efficient utilization of visible light, and effective separation of photogenerated charge carriers. Consequently, this synergistic photocatalytic system greatly facilitated the successful degradation of NPX and the inactivation of E. coli under visible-light irradiation. Compared to the pure Bi2S3 and CoS2 catalysts, the Bi2S3/CoS2 (1:2) composites displayed significantly enhanced photodegradation activity, achieving 96.46% (k = 0.2847 min-1) degradation of NPX within 90 min and maintaining good recyclability with no significant decline after six successive cycles. Additionally, the photocatalytic inactivation of E. coli results indicated that Bi2S3/CoS2 composites exhibited excellent performance, leading to the inactivation of 7 log10 cfu mL-1 of bacterial cells after 150 min of visible-light exposure. Scanning Electron Microscopy (SEM) and K+ ions leakage tests demonstrated that the destruction of the E. coli cell membrane structure resulted in cell death. The outcomes of this work suggest that Bi2S3/CoS2 composites hold significant potential for treating water contaminated with antibiotic and microbial pollutants.
Collapse
Affiliation(s)
- Vasanthakumar V
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Jothimani K
- Department of Biotechnology, Vinayaka Mission's Kirupananda Variyar Engineering College, Vinayaka Mission's Research Foundation, Salem, 636 308, Tamil Nadu, India
| | - Murad Alsawalha
- Department of Chemical Engineering, Industrial Chemistry Division, Jubail Industrial College, P.O. Box 10099, Jubail, 31961, Saudi Arabia
| | - Zhiyong Zhang
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China; Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, PR China
| | - Ming-Lai Fu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China.
| | - Baoling Yuan
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China; Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, PR China.
| |
Collapse
|
2
|
Bakina O, Svarovskaya N, Ivanova L, Glazkova E, Rodkevich N, Evstigneev V, Evstigneev M, Mosunov A, Lerner M. New PMMA-Based Hydroxyapatite/ZnFe 2O 4/ZnO Composite with Antibacterial Performance and Low Toxicity. Biomimetics (Basel) 2023; 8:488. [PMID: 37887619 PMCID: PMC10604293 DOI: 10.3390/biomimetics8060488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Polymethylmethacrylate (PMMA) is the most commonly used bone void filler in orthopedic surgery. However, the biocompatibility and radiopacity of PMMA are insufficient for such applications. In addition to insufficient biocompatibility, the microbial infection of medical implants is one of the frequent causes of failure in bone reconstruction. In the present work, the preparation of a novel PMMA-based hydroxyapatite/ZnFe2O4/ZnO composite with heterophase ZnFe2O4/ZnO NPs as an antimicrobial agent was described. ZnFe2O4/ZnO nanoparticles were produced using the electrical explosion of zinc and iron twisted wires in an oxygen-containing atmosphere. This simple, highly productive, and inexpensive nanoparticle fabrication approach could be readily adapted to different applications. From the findings, the presented composite material showed significant antibacterial activity (more than 99% reduction) against P. aeruginosa, S. aureus, and MRSA, and 100% antifungal activity against C. albicans, as a result of the combined use of both ZnO and ZnFe2O4. The composite showed excellent biocompatibility against the sensitive fibroblast cell line 3T3. The more-than-70% cell viability was observed after 1-3 days incubation of the sample. The developed composite material could be a potential material for the fabrication of 3D-printed implants.
Collapse
Affiliation(s)
- Olga Bakina
- Institute of Strength Physics and Material Science, Siberian Branch of Russian Academy of Science, Av. Akademicheskii, 2/4, 634055 Tomsk, Russia; (N.S.); (E.G.); (N.R.); (M.L.)
| | - Natalia Svarovskaya
- Institute of Strength Physics and Material Science, Siberian Branch of Russian Academy of Science, Av. Akademicheskii, 2/4, 634055 Tomsk, Russia; (N.S.); (E.G.); (N.R.); (M.L.)
| | - Ludmila Ivanova
- Institute of Strength Physics and Material Science, Siberian Branch of Russian Academy of Science, Av. Akademicheskii, 2/4, 634055 Tomsk, Russia; (N.S.); (E.G.); (N.R.); (M.L.)
| | - Elena Glazkova
- Institute of Strength Physics and Material Science, Siberian Branch of Russian Academy of Science, Av. Akademicheskii, 2/4, 634055 Tomsk, Russia; (N.S.); (E.G.); (N.R.); (M.L.)
| | - Nikolay Rodkevich
- Institute of Strength Physics and Material Science, Siberian Branch of Russian Academy of Science, Av. Akademicheskii, 2/4, 634055 Tomsk, Russia; (N.S.); (E.G.); (N.R.); (M.L.)
| | - Vladyslav Evstigneev
- Sevastopol State University, 33 Universitetskaya Street, 299053 Sevastopol, Russia; (V.E.); (M.E.)
| | - Maxim Evstigneev
- Sevastopol State University, 33 Universitetskaya Street, 299053 Sevastopol, Russia; (V.E.); (M.E.)
| | - Andrey Mosunov
- Sevastopol State University, 33 Universitetskaya Street, 299053 Sevastopol, Russia; (V.E.); (M.E.)
| | - Marat Lerner
- Institute of Strength Physics and Material Science, Siberian Branch of Russian Academy of Science, Av. Akademicheskii, 2/4, 634055 Tomsk, Russia; (N.S.); (E.G.); (N.R.); (M.L.)
- Sevastopol State University, 33 Universitetskaya Street, 299053 Sevastopol, Russia; (V.E.); (M.E.)
| |
Collapse
|
3
|
Al-Najar B, Kamel AH, Albuflasa H, Hankins NP. Spinel ferrite nanoparticles as potential materials in chlorophenol removal from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:104976-104997. [PMID: 37723389 DOI: 10.1007/s11356-023-29809-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/06/2023] [Indexed: 09/20/2023]
Abstract
Persistent organic pollutants (POPs) including chlorophenols (CPs) are increasing in water effluents, creating serious problems for both aquatic and terrestrial lives. Several research attempts have considered the removal of CPs by functionalised nanomaterials as adsorbents and catalysts. Besides the unique crystal structure, spinel ferrite nanomaterials (SFNs) own interesting optical and magnetic properties that give them the potential to be utilised in the removal of different types of CPs. In this review, we highlighted the recent research work that focused on the application of SFNs in the removal of different CP substances based on the number of chlorine atom attached to the phenolic compound. We have also discussed the structure and properties of SFN along with their numerous characterisation tools. We demonstrated the importance of identifying the structure, surface area, porosity, optical properties, etc. in the efficiency of the SFN during the CP removal process. The reviewed research efforts applied photocatalysis, wet peroxide oxidation (WPO), persulfate activated oxidation and adsorption. The studies presented different paths of enhancing the SFN ability to remove the CPs including doping (ion substitution), oxide composite structure and polymer composite structure. Experimental parameters such as temperature, dosage of CPs and SFN structure have shown to have a major effect in the CP removal efficiency. More attention is needed to investigate the different properties of SFN that can be tailored through different techniques and expected to have major role in the removal mechanism of CPs.
Collapse
Affiliation(s)
- Basma Al-Najar
- Department of Physics, University of Bahrain, P.O. Box 32038, Sakhir, Zallaq, Bahrain.
| | - Ayman H Kamel
- Department of Chemistry, University of Bahrain, P.O. Box 32038, Sakhir, Zallaq, Bahrain
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Hanan Albuflasa
- Department of Physics, University of Bahrain, P.O. Box 32038, Sakhir, Zallaq, Bahrain
| | - Nicholas P Hankins
- Department of Engineering Science, The University of Oxford, Parks Road, Oxford, OX3 1PJ, UK
| |
Collapse
|
4
|
Kong J, Zhang S, Shen M, Zhang J, Yoganathan S. Evaluation of copper(I)-doped zinc oxide composite nanoparticles on both gram-negative and gram-positive bacteria. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Liu G, Yu R, Jiang J, Ding Z, Ma J, Liang R. Robust immobilization of anionic silver nanoparticles on cellulose filter paper toward a low-cost point-of-use water disinfection system with improved anti-biofouling properties. RSC Adv 2021; 11:4873-4882. [PMID: 35424442 PMCID: PMC8694556 DOI: 10.1039/d0ra09152a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/14/2021] [Indexed: 12/29/2022] Open
Abstract
Silver nanoparticle (AgNP)-decorated cellulose filter paper (FP), a low-cost point-of-use (POU) water disinfection system, can supply affordable and safe drinking water for people in desperate need, especially in rural areas in developing countries. However, owing to the unstable immobilization of AgNPs, silver can leach into the treated drinking water from the FP and exceed the World Health Organization (WHO) drinking water limit (<100 μg L-1), which is a potential threat to both human health and the environment. In this work, in order to robustly immobilize anionic silver nanoparticles (GA@AgNPs), we facilely prepared lipoic acid-modified cellulose filter paper (LA-FP), in which GA@AgNPs were robustly immobilized onto filter paper (GA@AgNPs-LA-FP) by strong chelation via the disulfide bond of LA with the surface of the silver nanoparticles. GA@AgNPs-LA-FP exhibited both excellent bacterial anti-adhesion activity and strong bactericidal activity, which can synergistically mitigate biofouling by inhibiting biofilm formation on the paper surface. Moreover, employed as a gravity-driven bactericidal filter, the GA@AgNPs-LA-FP membrane treated 100 mL of river water within 10 min, and the resulting water quality met the WHO drinking water standards, indicating this material's practical application for POU water disinfection.
Collapse
Affiliation(s)
- Gongyan Liu
- College of Biomass Science and Engineering, Sichuan University Chengdu 610065 China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University Chengdu 610065 China
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University Chengdu 610065 China
| | - Ruiquan Yu
- College of Biomass Science and Engineering, Sichuan University Chengdu 610065 China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University Chengdu 610065 China
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University Chengdu 610065 China
| | - Jing Jiang
- College of Biomass Science and Engineering, Sichuan University Chengdu 610065 China
| | - Zhuang Ding
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University Chengdu 610065 China
| | - Jing Ma
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University Chengdu 610065 China
| | - Ruifeng Liang
- The State Key Laboratory of Hydraulic and Mountain River Engineering, Sichuan University Chengdu 610065 China
| |
Collapse
|
6
|
Mirzaeifard Z, Shariatinia Z, Jourshabani M, Rezaei Darvishi SM. ZnO Photocatalyst Revisited: Effective Photocatalytic Degradation of Emerging Contaminants Using S-Doped ZnO Nanoparticles under Visible Light Radiation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03192] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zahra Mirzaeifard
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), 15875-4413 Tehran, Iran
| | - Zahra Shariatinia
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), 15875-4413 Tehran, Iran
| | - Milad Jourshabani
- Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), 15875-4413 Tehran, Iran
| | | |
Collapse
|