1
|
Zeng J, Desmond P, Ngo HH, Lin W, Liu X, Liu B, Li G, Ding A. Membrane modification in enhancement of virus removal: A critical review. J Environ Sci (China) 2024; 146:198-216. [PMID: 38969448 DOI: 10.1016/j.jes.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/07/2024]
Abstract
Many waterborne diseases are related with viruses, and COVID-19 worldwide has raised the concern of virus security in water into the public horizon. Compared to other conventional water treatment processes, membrane technology can achieve satisfactory virus removal with fewer chemicals, and prevent the outbreaks of viruses to a maximal extent. Researchers developed new modification methods to improve membrane performance. This review focused on the membrane modifications that enhance the performance in virus removal. The characteristics of viruses and their removal by membrane filtration were briefly generalized, and membrane modifications were systematically discussed through different virus removal mechanisms, including size exclusion, hydrophilic and hydrophobic interactions, electronic interactions, and inactivation. Advanced functional materials for membrane modification were summarized based on their nature. Furthermore, it is suggested that membranes should be enhanced through different mechanisms mainly based on their ranks of pore size. The current review provided theoretical support regarding membrane modifications in the enhancement of virus removal and avenues for practical application.
Collapse
Affiliation(s)
- Jie Zeng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Peter Desmond
- Institute of Environmental Engineering (ISA), RWTH Aachen University, Aachen 52056, Germany
| | - Huu Hao Ngo
- Faculty of Engineering, University of Technology Sydney, Sydney 2007, Australia
| | - Wei Lin
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiao Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bingsheng Liu
- The Second Construction Co. Ltd. of China Construction Third Engineering Bureau, China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - An Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
2
|
Yu S, Li C, Zhao S, Chai M, Hou J, Lin R. Recent advances in the interfacial engineering of MOF-based mixed matrix membranes for gas separation. NANOSCALE 2024; 16:7716-7733. [PMID: 38536054 DOI: 10.1039/d4nr00096j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The membrane process stands as a promising and transformative technology for efficient gas separation due to its high energy efficiency, operational simplicity, low environmental impact, and easy up-and-down scaling. Metal-organic framework (MOF)-polymer mixed matrix membranes (MMMs) combine MOFs' superior gas-separation performance with polymers' processing versatility, offering the opportunity to address the limitations of pure polymer or inorganic membranes for large-scale integration. However, the incompatibility between the rigid MOFs and flexible polymer chains poses a challenge in MOF MMM fabrication, which can cause issues such as MOF agglomeration, sedimentation, and interfacial defects, substantially weakening membrane separation efficiency and mechanical properties, particularly gas separation. This review focuses on engineering MMMs' interfaces, detailing recent strategies for reducing interfacial defects, improving MOF dispersion, and enhancing MOF loading. Advanced characterisation techniques for understanding membrane properties, specifically the MOF-polymer interface, are outlined. Lastly, it explores the remaining challenges in MMM research and outlines potential future research directions.
Collapse
Affiliation(s)
- Shuwen Yu
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, 234000, China
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Conger Li
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Shuke Zhao
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Milton Chai
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Jingwei Hou
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Rijia Lin
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
3
|
Valverde-Gonzalez A, Yuriychuk N, Borrallo-Aniceto MC, Gándara F, Iglesias M, López-González M, Maya EM. Naphthalene Tetrazole-Based Nickel Metal-Organic Framework as a Filler of Polycarbonate Membranes to Improve CO 2 and H 2 Separation. ACS APPLIED POLYMER MATERIALS 2024; 6:4244-4255. [PMID: 38633815 PMCID: PMC11019729 DOI: 10.1021/acsapm.4c00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/26/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024]
Abstract
A tetrazole-naphthalene linker was used to prepare a nickel MOF (metal-organic framework) (NiNDTz) with interesting properties: a specific surface area SBET of 320 m2g-1 (SLangmuir 436 m2g-1), high thermal stability (Tdonset = 300 °C), and CO2 uptake of 1.85 mmolg-1, attributed to the tetrazole groups to be used as fillers in gas separation membranes. The role of these groups was crucial in the mechanical properties of mixed membranes prepared using polycarbonate as a polymer matrix, providing a very homogeneous filler distribution and also in the gas separation properties since a simultaneous increase in permeability and selectivity was achieved, especially in the hybrid membrane containing 20% filler (PC@NiNDTz-20%). This membrane exhibited an excellent balance between permeability (P) and selectivity (α) with an increase in the permeability of CO2 and H2, 177 and 185%, respectively, and improvements in the selectivity of these gases against greenhouse gases such as methane and ethylene (between 15 and 28% improvement). These results make this membrane competitive to deal with separations in which these gases are involved, and are of special interest for the H2/CH4 separation since it clearly improves the performance of pure PC and no better PC-based membranes have been reported in the literature for this separation.
Collapse
Affiliation(s)
- Antonio Valverde-Gonzalez
- Departamento
de Fronteras en Química de Materiales, Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz,
3, Cantoblanco, Madrid 28049, Spain
| | - Nastasiya Yuriychuk
- Departamento
de Química-Física de Polímeros, Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC),
Consejo Superior de Investigaciones Científicas, C/Juan de la Cierva 3, Madrid 28006, Spain
| | - M. Carmen Borrallo-Aniceto
- Departamento
de Fronteras en Química de Materiales, Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz,
3, Cantoblanco, Madrid 28049, Spain
| | - Felipe Gándara
- Departamento
de Fronteras en Química de Materiales, Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz,
3, Cantoblanco, Madrid 28049, Spain
| | - Marta Iglesias
- Departamento
de Fronteras en Química de Materiales, Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz,
3, Cantoblanco, Madrid 28049, Spain
- Departamento
de Química-Física de Polímeros, Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC),
Consejo Superior de Investigaciones Científicas, C/Juan de la Cierva 3, Madrid 28006, Spain
| | - Mar López-González
- Departamento
de Química-Física de Polímeros, Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC),
Consejo Superior de Investigaciones Científicas, C/Juan de la Cierva 3, Madrid 28006, Spain
| | - Eva M. Maya
- Departamento
de Fronteras en Química de Materiales, Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Sor Juana Inés de la Cruz,
3, Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
4
|
Addai FP, Wu J, Liu Y, Ma X, Han J, Lin F, Zhou Y, Wang Y. Amorphous-crystalline phase transition and intrinsic magnetic property of nickel organic framework for easy immobilization and recycling of β-Galactosidase. Int J Biol Macromol 2024; 254:127901. [PMID: 37952798 DOI: 10.1016/j.ijbiomac.2023.127901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/14/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
This work describes the synthesis of fibrous nickel-based metal organic framework (Ni-ZIF) via simple solvothermal method. The material formed was calcinated at 400, 600, 800 °C to improve its surface area, porosity and enzyme binding capacity. Changes in X-ray diffraction pattern after calcination revealed the Ni-ZIF transitioned from amorphous to crystalline structure. The surface area, pore volume and pore size for Ni-ZIF@600 were found to be 312.15 m2/g, 0.88 cm3/g and 10.28 nm, with an enzyme loading capacity of 593.85 mg/g after 30 h The free (β-Gal-LEH) and immobilized β-Galactosidase were stable at pH 7.5, temperature 50 °C, and yielded 70.70 and 63.95 mM glucose after milk lactose hydrolysis, respectively. The Ni-ZIF@600@β-Gal-LEH exhibited high enzyme retention capacity, maintaining 59.44 % of its original activity after 6-cycles. The enhanced magnetic property, enzyme binding capacity and easy recoverability of the calcinated Ni-ZIF could guarantee its industrial significance as immobilization module for enzyme-mediated catalysis.
Collapse
Affiliation(s)
- Frank Peprah Addai
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Jiacong Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Yuelin Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Xinnan Ma
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Juan Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Feng Lin
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture, Zhejiang Institute of Freshwater Fisheries, Huzhou, Zhejiang Province 313001, China
| | - Yang Zhou
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| | - Yun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| |
Collapse
|
5
|
Al-Haik M, Ayyagari S, Ren Y, Abbott A, Zheng BQ, Koerner H. Hybrid Metal-Organic Frameworks/Carbon Fibers Reinforcements for Additively Manufactured Composites. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:944. [PMID: 36903822 PMCID: PMC10005366 DOI: 10.3390/nano13050944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/26/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Additively manufactured (AM) composites based on short carbon fibers possess strength and stiffness far less than their continuous fiber counterparts due to the fiber's small aspect ratio and inadequate interfaces with the epoxy matrix. This investigation presents a route for preparing hybrid reinforcements for AM that comprise short carbon fibers and nickel-based metal-organic frameworks (Ni-MOFs). The porous MOFs furnish the fibers with tremendous surface area. Additionally, the MOFs growth process is non-destructive to the fibers and easily scalable. This investigation also demonstrates the viability of using Ni-based MOFs as a catalyst for growing multi-walled carbon nanotubes (MWCNTs) on carbon fibers. The changes to the fiber were examined via electron microscopy, X-ray scattering techniques, and Fourier-transform infrared spectroscopy (FTIR). The thermal stabilities were probed by thermogravimetric analysis (TGA). Tensile and dynamic mechanical analysis (DMA) tests were utilized to explore the effect of MOFs on the mechanical properties of 3D-printed composites. Composites with MOFs exhibited improvements in stiffness and strength by 30.2% and 19.0%, respectively. The MOFs enhanced the damping parameter by 700%.
Collapse
Affiliation(s)
- Marwan Al-Haik
- Department of Mechanical Engineering, Kennesaw State University, Marietta, GA 30060, USA
| | - Suma Ayyagari
- Department of Aerospace Engineering, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114, USA
| | - Yixin Ren
- Materials and Manufacturing Directorate, Air Force Research Laboratory (AFRL/RXCC), Wright-Patterson AFB, Dayton, OH 45433, USA
| | - Andrew Abbott
- Materials and Manufacturing Directorate, Air Force Research Laboratory (AFRL/RXCC), Wright-Patterson AFB, Dayton, OH 45433, USA
| | - Bing Qian Zheng
- Materials and Manufacturing Directorate, Air Force Research Laboratory (AFRL/RXCC), Wright-Patterson AFB, Dayton, OH 45433, USA
| | - Hilmar Koerner
- Materials and Manufacturing Directorate, Air Force Research Laboratory (AFRL/RXCC), Wright-Patterson AFB, Dayton, OH 45433, USA
| |
Collapse
|
6
|
Fakoori M, Azdarpour A, Honarvar B. Performance of amine‐functionalized MIL‐53 incorporated thin‐film nanocomposite Pebax membranes for CO
2
/CH
4
mixed gas separation. ASIA-PAC J CHEM ENG 2022. [DOI: 10.1002/apj.2848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mahdi Fakoori
- Department of Chemical Engineering, Marvdasht Branch Islamic Azad University Marvdasht Iran
| | - Amin Azdarpour
- Department of Chemical Engineering, Marvdasht Branch Islamic Azad University Marvdasht Iran
| | - Bizhan Honarvar
- Department of Chemical Engineering, Marvdasht Branch Islamic Azad University Marvdasht Iran
| |
Collapse
|
7
|
Taghipour A, Rahimpour A, Rastgar M, Sadrzadeh M. Ultrasonically synthesized MOFs for modification of polymeric membranes: A critical review. ULTRASONICS SONOCHEMISTRY 2022; 90:106202. [PMID: 36274415 PMCID: PMC9593890 DOI: 10.1016/j.ultsonch.2022.106202] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Metal-organic framework (MOF) membranes hold the promise for energy-efficient separation processes. These nanocrystalline compounds can effectively separate materials with different sizes and shapes at a molecular level. Furthermore, MOFs are excellent candidates for improving membrane permeability and/or selectivity due to their unique properties, such as high specific area and special wettability. Generally, MOFs can be used as fillers in mixed matrix membranes (MMMs) or incorporated onto the membrane surface to modify the top layer. Characteristics of the MOFs, and correspondingly, the properties of the MOF-based membranes, are majorly affected by their production technique. This critical review discusses the sonication technique for MOF production and the opportunities and challenges of using MOF for making membranes. Effective parameters on the characteristics of the synthesized MOFs, such as sonication time and power, were discussed in detail. Although the ultrasonically synthesized MOFs have shown great potential in the fabrication/modification of membranes for gas and liquid separation/purification, so far, no comprehensive and critical review has been published to clarify such accomplishments and technological gaps for the future research direction. This paper aims to review the most recent research conducted on ultrasonically synthesized MOF for the modification of polymeric membranes. Recommendations are provided with the intent of identifying the potential future works to explore the influential sonication parameters.
Collapse
Affiliation(s)
- Amirhossein Taghipour
- Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton AB T6G 1H9, Canada
| | - Ahmad Rahimpour
- Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton AB T6G 1H9, Canada.
| | - Masoud Rastgar
- Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton AB T6G 1H9, Canada
| | - Mohtada Sadrzadeh
- Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton AB T6G 1H9, Canada.
| |
Collapse
|
8
|
Surface modification of PVDF membrane via deposition-grafting of UiO-66-NH2 and their application in oily water separations. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Khalili M, Razmjou A, Shafiei R, Shahavi MH, Li MC, Orooji Y. High durability of food due to the flow cytometry proved antibacterial and antifouling properties of TiO 2 decorated nanocomposite films. Food Chem Toxicol 2022; 168:113291. [PMID: 35870732 DOI: 10.1016/j.fct.2022.113291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/23/2022] [Accepted: 07/10/2022] [Indexed: 01/18/2023]
Abstract
Although polymeric membrane has superior properties, its applications in biomedical and food industrial fields are minimal. Biofouling is a significant concern in the membrane, created from particular interactions between the membrane and untreated water content. This research showed that a careful superhydrophilic modification of polyethersulfone membrane could address those drawbacks that have hindered their utility. Hence, a combination of chemical and physical modification showed far-reaching effects on surface behavior, affecting manifold aspects of its bacterial attachment, protein adsorption resistance, and hydrophilicity. The contact angle measurement results decreased from 30° to 0° in 26 s, and surface free energy increased by 33%, demonstrating the shifting surface wettability behavior toward the Superhydrophilicity. Besides, increasing the average surface roughness on the nanoscale and forming 70-110 nm jagged structures results in a marked reduction in protein adsorption, bacterial adhesion, and biofouling formation, confirmed by the results of Flow cytometry analysis and microtiter plate assay. An improved understanding of antifouling and antibacterial properties will greatly assist in food industries since it can be applied to enhance the durability of food and chemical materials. This is important as it gives us a simple way of improving packing reliability, reducing costs and amounts of undesirable waste products.
Collapse
Affiliation(s)
- Mahsa Khalili
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 73441-81746, Iran
| | - Amir Razmjou
- School of Engineering, Edith Cowan University (ECU), Perth, Australia; UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Rasoul Shafiei
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, 73441-81746, Iran
| | - Mohammad Hassan Shahavi
- Department of Nanotechnology, Faculty of Engineering Modern Technologies, Amol University of Special Modern Technologies (AUSMT), Amol, Iran
| | - Mei-Chun Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, PR China; School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, PR China.
| |
Collapse
|
10
|
Helal A, Shaheen Shah S, Usman M, Khan MY, Aziz MA, Mizanur Rahman M. Potential Applications of Nickel-Based Metal-Organic Frameworks and their Derivatives. CHEM REC 2022; 22:e202200055. [PMID: 35695377 DOI: 10.1002/tcr.202200055] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/13/2022] [Indexed: 12/15/2022]
Abstract
Metal-Organic Frameworks (MOFs), a novel class of porous extended crystalline structures, are favored in different fields of heterogeneous catalysis, CO2 separation and conversion, and energy storage (supercapacitors) due to their convenience of synthesis, structural tailor-ability, tunable pore size, high porosity, large specific surface area, devisable structures, and adjustable compositions. Nickel (Ni) is a ubiquitous element extensively applied in various fields of catalysis and energy storage due to its low cost, high abundance, thermal and chemical stability, and environmentally benign nature. Ni-based MOFs and their derivatives provide us with the opportunity to modify different properties of the Ni center to improve their potential as heterogeneous catalysts or energy storage materials. The recent achievements of Ni-MOFs and their derivatives as catalysts, membrane materials for CO2 separation and conversion, electrode materials and their respective performance have been discussed in this review.
Collapse
Affiliation(s)
- Aasif Helal
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Syed Shaheen Shah
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.,Physics Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Muhammad Usman
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Mohd Yusuf Khan
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.,K.A. CARE Energy Research & Innovation Center, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Mohammad Mizanur Rahman
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
11
|
Yang Z, Ying Y, Pu Y, Wang D, Yang H, Zhao D. Poly(ionic liquid)-Functionalized UiO-66-(OH) 2: Improved Interfacial Compatibility and Separation Ability in Mixed Matrix Membranes for CO 2 Separation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ziqi Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Yunpan Ying
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Yunchuan Pu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Dechao Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710129, China
| | - Hao Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
12
|
Liu Z, Li X, He W, Zhao G, Yang Y, Liu X, Zhang X, Li X, Zhang S, Sun W, Lu G. Synergistic effect of charge and strain engineering on porous g-C9N7 nanosheets for highly controllable CO2 capture and separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Khoshhal Salestan S, Rahimpour A, Abedini R, Soleimanzade MA, Sadrzadeh M. A new approach toward modeling of mixed‐gas sorption in glassy polymers based on metaheuristic algorithms. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Ahmad Rahimpour
- Department of Chemical Engineering Babol Noshirvani University of Technology Babol Iran
- Department of Mechanical Engineering, 10‐367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL) University of Alberta Edmonton Canada
| | - Reza Abedini
- Department of Chemical Engineering Babol Noshirvani University of Technology Babol Iran
| | - Mohammad Amin Soleimanzade
- Department of Mechanical Engineering, 10‐367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL) University of Alberta Edmonton Canada
| | - Mohtada Sadrzadeh
- Department of Mechanical Engineering, 10‐367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL) University of Alberta Edmonton Canada
| |
Collapse
|
14
|
Kim S, Cho SY, Son K, Attia NF, Oh H. A metal-doped flexible porous carbon cloth for enhanced CO2/CH4 separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
15
|
Multifunctional porphyrinic Zr-MOF composite membrane for high-performance oil-in-water separation and organic dye adsorption/photocatalysis. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Ying Y, Yang Z, Shi D, Peh SB, Wang Y, Yu X, Yang H, Chai K, Zhao D. Ultrathin covalent organic framework film as membrane gutter layer for high-permeance CO2 capture. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119384] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
17
|
Helal A, Fettouhi M, Arafat ME, Khan MY, Sanhoob MA. Nickel based metal-organic framework as catalyst for chemical fixation of CO2 in oxazolidinone synthesis. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Keyikoglu R, Karatas O, Rezania H, Kobya M, Vatanpour V, Khataee A. A review on treatment of membrane concentrates generated from landfill leachate treatment processes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118182] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|