1
|
Lv S, Sun T, Zhang J, Li Y, Zhang S, Gao G. Adsorption behavior and mechanism of aqueous organic contaminants on β-cyclodextrin polymer. ENVIRONMENTAL RESEARCH 2025; 275:121435. [PMID: 40118317 DOI: 10.1016/j.envres.2025.121435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
The β-cyclodextrin polymer, synthesized using tetrafluoroterephthalonitrile (TFPN-β-CD), was employed for the adsorption of ten organic contaminants in water. Among them, methylene blue (MB), bisphenol A (BPA), tetracycline, and kaempferol exhibited superior adsorption efficiency and were selected for detailed investigation. Toth isotherm model appropriately described the adsorption process of TFPN-β-CD with MB, BPA, tetracycline and kaempferol compared with Langmuir and Freundlich isotherm models. The PSO model showed ideal fitting for the adsorption process of TFPN-β-CD to four organic contaminants in adsorption kinetics fitting. Weakly acidic aqueous solutions enhanced adsorption capacity, whereas inorganic salts caused erosion during the adsorption process. Dynamic factors such as loading capacity, pH, flow rate, renewability, and reusability were investigated using MB as an example. Higher loading capacity and flow rate favored improved adsorption efficiency; moreover, TFPN-β-CD could be easily regenerated and reused. Importantly, the respective mechanisms underlying TFPN-β-CD's adsorption were elucidated: electrostatic interactions exerted a stronger force than hydrophilic & hydrophobic interactions in the case of MB; however, hydrophilic & hydrophobic forces played significant roles in BPA, tetracycline, and kaempferol adsorptions.
Collapse
Affiliation(s)
- Shuquan Lv
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, PR China; School of Environmental and Biological Engineering, Wuhan Technology and Business University, NO. 3 Huangjiahu West Road, Wuhan, 430065, PR China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, PR China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, PR China
| | - Jingli Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, PR China
| | - Yinghui Li
- School of Environmental and Biological Engineering, Wuhan Technology and Business University, NO. 3 Huangjiahu West Road, Wuhan, 430065, PR China
| | - Shasha Zhang
- School of Arts and Media, Wuhan Vocational College of Software and Engineering, No. 117 Guanggu Road, Wuhan, 430205, PR China.
| | - Guanbin Gao
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, PR China; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, PR China.
| |
Collapse
|
2
|
Cui C, Qiao W, Li D, Wang LJ. Dual cross-linked magnetic gelatin/carboxymethyl cellulose cryogels for enhanced Congo red adsorption: Experimental studies and machine learning modelling. J Colloid Interface Sci 2025; 678:619-635. [PMID: 39305629 DOI: 10.1016/j.jcis.2024.09.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 10/27/2024]
Abstract
To achieve highly efficient and environmentally degradable adsorbents for Congo red (CR) removal, we synthesized a dual-network nanocomposite cryogel composed of gelatin/carboxymethyl cellulose, loaded with Fe3O4 nanoparticles. Gelatin and sodium carboxymethylcellulose were cross-linked using transglutaminase and calcium chloride, respectively. The cross-linking process enhanced the thermal stability of the composite cryogels. The CR adsorption process exhibited a better fit to the pseudo-second-order model and Langmuir model, with maximum adsorption capacity of 698.19 mg/g at pH of 7, temperature of 318 K, and initial CR concentration of 500 mg/L. Thermodynamic results indicated that the CR adsorption process was both spontaneous and endothermic. The performance of machine learning model showed that the Extreme Gradient Boosting model had the highest test determination coefficient (R2 = 0.9862) and the lowest root mean square error (RMSE = 10.3901 mg/g) among the 6 models. Feature importance analysis using SHapley Additive exPlanations (SHAP) revealed that the initial concentration had the greatest influence on the model's prediction of adsorption capacity. Density functional theory calculations indicated that there were active sites on the CR molecule that can undergo electrostatic interactions with the adsorbent. Thus, the synthesized cryogels demonstrate promising potential as adsorbents for dye removal from wastewater.
Collapse
Affiliation(s)
- Congli Cui
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing 100083, China
| | - Weixu Qiao
- Department of Automation, Tsinghua University, Beijing 100084, China
| | - Dong Li
- College of Engineering, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Energy R & D Center for Non-food Biomass, China Agricultural University, P. O. Box 50, 17 Qinghua Donglu, Beijing 100083, China.
| | - Li-Jun Wang
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory of Functional Food from Plant Resources, China Agricultural University, Beijing, China.
| |
Collapse
|
3
|
Fu X, Mao T, Wang Y, Wei L, Sun J, Liu N, An Q, Xiao LP, Shao G. Superparamagnetic composites of lignin regenerated from ionic liquid solutions for the efficient and selective removal of cationic dyes. Int J Biol Macromol 2024; 279:135311. [PMID: 39236948 DOI: 10.1016/j.ijbiomac.2024.135311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/06/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Magnetic lignin nanoparticles (MLNs) were prepared by inducing their self-assembly through lignin regeneration in the [N-methyl-2-pyrrolidone][C1-C4 carboxylic acid] ionic liquids ([NMP]ILs), which are low-cost protic ionic liquid. [NMP]ILs are self-assembling solvent that can enhance the adsorption capacity of MLNs to a greater degree than tetrahydrofuran or H2O. Additionally, the anion types of [NMP]IL greatly influence the physiochemical properties of MLNs. The MLNs prepared through self-assembly with [NMP][formate] (MLN/[NMP][For]) exhibited a higher maximum adsorption capacity (134.53 mg/g) than the [NMP]ILs of C2-C4 carboxylate anions. MLN/[NMP][For] demonstrated stable adsorption within a pH range of 6-10 or at high salt concentrations (0.01-0.5 mol/L), retaining over 80 % of its regeneration efficiency after 5 cycles. In addition, MLN/[NMP][For] selectively removed cationic dyes in mixed binary anionic-cationic dye solutions. This work demonstrated the feasibility of preparing magnetic biosorbents with good selectivity and stability though regeneration and by adjusting the anions of ionic liquids.
Collapse
Affiliation(s)
- Xu Fu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian 116034, China
| | - Tianyou Mao
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Ying Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Ligang Wei
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Jian Sun
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Na Liu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Qingda An
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian 116034, China
| | - Ling-Ping Xiao
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China; Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian 116034, China
| | - Guolin Shao
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
4
|
Liu X, Zhao Y, Xu Y, Liu C. Synthesis of γ-Cyclodextrin-Reduced Fe(III) Nanoparticles with Peroxidase-like Catalytic Activity for Bacteriostasis of Food. NANO LETTERS 2023; 23:9995-10003. [PMID: 37857332 DOI: 10.1021/acs.nanolett.3c03103] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Foodborne pathogens are a primary cause of human foodborne illness, making it imperative to explore novel antibacterial strategies for their control. In this study, Fe-γ-CD was successfully synthesized as a food antibacterial agent for use in milk and orange juice. The Fe-γ-CD consists of 6/11 Fe(II) and 5/11 Fe(III), which catalyze a Fenton-like catalytic reaction with H2O2 to generate •OH. Consequently, Fe-γ-CD exhibits exceptional peroxidase-like activity and broad-spectrum antibacterial efficacy. Fe-γ-CD not only disrupts the wall structure of ESBL-E. coli but also induces protein leakage and genetic destruction, ultimately leading to its death. Furthermore, Fe-γ-CD inhibits biofilm formation by MRSA and eradicates mature biofilms, resulting in MRSA's demise. Importantly, Fe-γ-CD demonstrates negligible cytotoxicity toward normal mammalian cells, making it an ideal candidate for application as an antibacterial agent in foodstuffs. These findings highlight that Fe-γ-CD is an effective tool for combating the spread of foodborne pathogens and food safety.
Collapse
Affiliation(s)
- Xiaohui Liu
- College of Life Sciences, Institute of Biomedical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, Shandong, China
| | - Yuhan Zhao
- College of Life Sciences, Institute of Biomedical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, Shandong, China
| | - Yuanhong Xu
- College of Life Sciences, Institute of Biomedical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, Shandong, China
| | - Chengzhen Liu
- College of Life Sciences, Institute of Biomedical Engineering, Qingdao University, Ningxia Road 308, Qingdao 266071, Shandong, China
| |
Collapse
|
5
|
Hu QD, Jiang HL, Lam KH, Hu ZP, Liu ZJ, Wang HY, Yang YY, Baigenzhenov O, Hosseini-Bandegharaei A, He FA. Polydopamine-modification of a magnetic composite constructed from citric acid-cross-linked cyclodextrin and graphene oxide for dye removal from waters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27679-7. [PMID: 37271788 DOI: 10.1007/s11356-023-27679-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/11/2023] [Indexed: 06/06/2023]
Abstract
The effect of polydopamine (PDA) modification on aminated Fe3O4 nanoparticles (Fe3O4-NH2)/graphite oxide (GO)/β-cyclodextrin polymer cross-linked by citric acid (CDP-CA) composites were studied for the removal of a cationic dye (methylene blue, MB) and an anionic dye (Congo red, CR) from waters. The micro-structural and magnetic characterizations confirmed the successful preparation of Fe3O4-NH2/GO/CDP-CA and PDA/Fe3O4-NH2/GO/CDP-CA composites. The maximum MB and CR adsorption capacities of Fe3O4-NH2/GO/CDP-CA were 75 mg/g and 104 mg/g, respectively, while the corresponding amounts for PDA/Fe3O4-NH2/GO/CDP-CA composite were 195 mg/g and 64 mg/g, respectively. The dye sorption behaviors of these two composites were explained by their corresponding surface-charged properties according to the measured zeta potential results. Moreover, the high saturation magnetizations and the stable dye removal rate in the adsorption-desorption cycles indicated the good recyclability and reusability of the fabricated composites.
Collapse
Affiliation(s)
- Qing-Di Hu
- School of Materials Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Hong-Liu Jiang
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330069, China
| | - Kwok-Ho Lam
- Centre for Medical and Industrial Ultrasonics, James Watt School of Engineering, University of Glasgow, Glasgow, Scotland, UK
| | - Zhi-Peng Hu
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330069, China
| | - Zhi-Jie Liu
- School of Materials Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Hua-Ying Wang
- School of Materials Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Yong-Yu Yang
- School of Materials Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | | | | | - Fu-An He
- School of Materials Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China.
| |
Collapse
|
6
|
Lagiewka J, Nowik-Zajac A, Pajdak A, Zawierucha I. A novel multifunctional β-cyclodextrin polymer as a promising sorbent for rapid removal of methylene blue from aqueous solutions. Carbohydr Polym 2023; 307:120615. [PMID: 36781275 DOI: 10.1016/j.carbpol.2023.120615] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023]
Abstract
Production wastewater has evolved with dye and printing technology to become one of the major sources of soil and water contamination. The majority of dyes are carcinogenic, teratogenic, and mutagenic compounds. As a result, dealing with the dye in the wastewater is a critical issue. Insoluble polymers of β-cyclodextrin (β-CD), an inexpensive, sustainably produced macrocycle of glucose, have potential to remove dyes from water/wastewater via sorption due to formation of well-defined host-guest complexes. A novel polymeric sorbent based on cyclodextrin was successfully synthesized in a one-step reaction with few reagents. The polymer is characterized by multifunctionality and cross-linked network structure. The sorption studies aimed at the removal of methylene blue (MB) from aqueous solutions. The dominant model was Langmuir isotherm which indicated a sorption capacity of 96.15 mg/g. The rapid removal has already been obtained after 1 min, around 84 % of efficiency. The molecular mechanism of MB sorption by poly(β-CD-BPDA) network is found mostly on the electrostatic interactions and partially on the inclusion of complexation inside supramolecular pores based on cyclodextrins' cavities, hydrogen bonding and slightly π-stacking. The presented polymer seems to be a promising sorbent for the removal of hazardous organic pollutants from water/wastewater.
Collapse
Affiliation(s)
- Jakub Lagiewka
- Institute of Chemistry, Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Czestochowa 42-200, Poland.
| | - Anna Nowik-Zajac
- Institute of Chemistry, Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Czestochowa 42-200, Poland
| | - Anna Pajdak
- Strata Mechanics Research Institute, Polish Academy of Sciences, 30-059 Krakow, Poland
| | - Iwona Zawierucha
- Institute of Chemistry, Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, Czestochowa 42-200, Poland
| |
Collapse
|
7
|
Liang Q, Pan Y, Zhang D, Lü T, Zhao H, Zhang Y. Preparation of bichar/layered double hydroxide@alginate aerogel as a highly efficient adsorbent for
Cu
2+
and
Cd
2+
. J Appl Polym Sci 2022. [DOI: 10.1002/app.53361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Qianyong Liang
- Institute of Environmental Materials and Applications, College of Materials and Environmental Engineering Hangzhou Dianzi University Hangzhou People's Republic of China
| | - Ying Pan
- Institute of Environmental Materials and Applications, College of Materials and Environmental Engineering Hangzhou Dianzi University Hangzhou People's Republic of China
| | - Dong Zhang
- Institute of Environmental Materials and Applications, College of Materials and Environmental Engineering Hangzhou Dianzi University Hangzhou People's Republic of China
| | - Ting Lü
- Institute of Environmental Materials and Applications, College of Materials and Environmental Engineering Hangzhou Dianzi University Hangzhou People's Republic of China
| | - Hongting Zhao
- Institute of Environmental Materials and Applications, College of Materials and Environmental Engineering Hangzhou Dianzi University Hangzhou People's Republic of China
- School of Environmental and Chemical Engineering Foshan University Foshan People's Republic of China
| | - Yan Zhang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco‐Dyeing & Finishing of Textiles Zhejiang Sci‐Tech University Hangzhou People's Republic of China
- Key Laboratory of Green Cleaning Technology & Detergent of Zhejiang Province Lishui People's Republic of China
| |
Collapse
|
8
|
Debord J, Harel M, Bollinger JC, Chu KH. The Elovich isotherm equation: Back to the roots and new developments. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Zhao W, Cui Y, Zhou S, Ye J, Sun J, Liu X. Rapid adsorption of dyes from aqueous solutions by modified lignin derived superparamagnetic composites. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Preparation of the hexachlorocyclotriphosphazene crosslinked sodium alginate polymer/multi-walled carbon nanotubes composite powder for the removal of the cationic dyes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Aberkane F, Khelifa T, Lamraoui H, Abdou I, Zine N, Errachid A, Elaissari A. Free Energy of Adsorption of Methylene Blue on Polyvinyl Chloride Containing Iron Oxide Nanoparticles Coated with Poly[2-(dimethylamino)ethyl methacrylate]. J MACROMOL SCI B 2022. [DOI: 10.1080/00222348.2022.2093015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Fairouz Aberkane
- Department of Chemistry, Faculty of Matter Science, LCCE Laboratory, University of Batna-1, Batna, Algeria
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Villeurbanne, France
| | - Teqwa Khelifa
- Department of Chemistry, Faculty of Matter Science, LCCE Laboratory, University of Batna-1, Batna, Algeria
| | - Hamoudi Lamraoui
- Department of Chemistry, Faculty of Matter Science, LCCE Laboratory, University of Batna-1, Batna, Algeria
| | - Imene Abdou
- Higher National School of Renewable Energies, Environment, and Sustainable Development, Batna, Algeria
| | - Nadia Zine
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Villeurbanne, France
| | - Abdelhamid Errachid
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Villeurbanne, France
| | - Abdelhamid Elaissari
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Villeurbanne, France
| |
Collapse
|
12
|
Martwong E, Sukhawipat N, Junthip J. Adsorption of Cationic Pollutants from Water by Cotton Rope Coated with Cyclodextrin Polymers. Polymers (Basel) 2022; 14:polym14122312. [PMID: 35745888 PMCID: PMC9228999 DOI: 10.3390/polym14122312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022] Open
Abstract
The contamination from perilous organic compounds (pesticide and dyes) in water generates a significant problem for the environment and humans. A modified textile was prepared by a coating of anionic cyclodextrin polymer, obtained from the cross-linking between citric acid and β-cyclodextrin in the presence of poly (vinyl alcohol), on the cotton cord for cationic pollutant removal from an aqueous solution. Its physicochemical properties were also characterized by gravimetry, titration, stereomicroscopy, SEM, TGA, 13C NMR, and ATR-FTIR. The CC2 system exhibited 79.2% coating yield, 1.12 mmol/g COOH groups, 91.3% paraquat (PQ) removal, 97.0% methylene blue (MB) removal, and 98.3% crystal violet (CV) removal for 25 mg/L of initial concentration. The kinetics was fitted to the pseudo-second-order model using 6 h of contact time. The isotherm was suitable for the Langmuir isotherm with a maximum adsorption of 26.9 mg/g (PQ), 23.7 mg/g (MB), and 30.3 mg/g (CV). After 120 h of contact time in water and 5% v/v of HCI in ethanol, the weight loss was 7.5% and 5.6%, respectively. Finally, the recyclability performance reached 84.8% (PQ), 95.2% (MB), and 96.9% (CV) after five reuses.
Collapse
Affiliation(s)
- Ekkachai Martwong
- Division of Science (Chemistry), Faculty of Science and Technology, Rajamangala University of Technology Suvarnabhumi, Phra Nakhon Si Ayutthaya 13000, Thailand;
| | - Nathapong Sukhawipat
- Division of Polymer Engineering Technology, Department of Mechanical Engineering Technology, College of Industrial Technology, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand;
| | - Jatupol Junthip
- Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima 30000, Thailand
- Correspondence: ; Tel.: +66-(0)4-400-9009 (ext. 1110)
| |
Collapse
|
13
|
Xu W, Liu X, Cai J, Xue T, Tang K. Synthesis of reusable cyclodextrin polymers for removal of naphthol and naphthylamine from water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:22106-22121. [PMID: 34778912 DOI: 10.1007/s11356-021-17234-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
As one group of important naphthalene derivatives, naphthol and naphthylamine are diffusely employed as dye intermediates. The presence of naphthol and naphthylamine in water systems may pose risks to the environment and public health due to their carcinogenicity. In this study, four mesoporous polymers prepared by β-cyclodextrin derivatives and tetrafluoroterephthalonitrile were obtained and applied to adsorbing 1-naphthylamine, 2-naphthylamine, 1-naphthol, and 2-naphthol from water. The impact of adsorption time, initial concentration of naphthol and naphthylamine, and temperature on the adsorption efficiency of the four polymers were explored separately. The four polymers present fast adsorption kinetics toward naphthol and naphthylamine, attaining 93 ~ 100% of adsorption equilibrium uptake for 1-naphthol, 1-naphthylamine, 2-naphthylamine in 15 min, and 87 ~ 90% of equilibrium uptake for 2-naphthol in 15 min. The kinetics could be depicted well by the pseudo-second-order kinetic model. The adsorption isotherms of the four polymers toward naphthol and naphthylamine accord with the Redlich-Peterson or Sips model. The maximum adsorption capacities of 1-naphthylamine, 2-naphthylamine, 1-naphthol, and 2-naphthol are 189.9 mg/g, 82.8 mg/g, 137.7 mg/g, and 88.7 mg/g, respectively. The adsorption ratio increases fast with reducing the initial concentration of naphthol and naphthylamine, and the adsorption ratio of naphthol and naphthylamine in 5 mg/L can achieve over 95% in 25 °C. In addition, the four polymers can be effortlessly regenerated by a gentle and simple washing procedure with little reduction in performance. The adsorption performance of the four polymers toward the four naphthalene derivatives can be improved by increasing the adsorption temperature. In conclusion, the prepared β-cyclodextrin polymers exhibit rapid water treatment in removing the four low-concentration naphthalene derivatives with convenient regeneration and good reusability.
Collapse
Affiliation(s)
- Weifeng Xu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, Hunan, China
| | - Xiang Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, Hunan, China
| | - Jianzhe Cai
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, Hunan, China
| | - Tiemeng Xue
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, Hunan, China
| | - Kewen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, Hunan, China.
| |
Collapse
|
14
|
Liu T, AgyeKum E, Ma S, Ye H, Li J, Gao M, Ni M, Zhang X, Wang X. Novel nanohybrids for effervescence enhanced magnetic solid-phase microextraction of wide-polarity organic pollutants in roasted meat samples. J Sep Sci 2021; 44:4313-4326. [PMID: 34661968 DOI: 10.1002/jssc.202100482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/22/2021] [Accepted: 10/09/2021] [Indexed: 11/10/2022]
Abstract
To simultaneously and efficiently extract pollutants with differential polarities, we herein fabricated and characterized a multifunctional nanocomposite. The novel nanohybrids used NiFe2 O4 as magnetic cores, and NH2 -MIL-101(Al), β-cyclodextrin and graphene oxide as functional components combined with magnetic cores. With the aid of graphene oxide's large π-conjugated system, NH2 -MIL-101(Al)'s strong adsorption to moderately/strongly polar chemicals, and β-cyclodextrin's specific recognition effect, the nanohybrids realized synergistically efficient extraction of polyaromatic hydrocarbons and bisphenols with a logKow range of 3-6. Combined with acidic and alkaline sources, the nanohybrids-based effervescent tablets were prepared. Based on effervescent reaction-enhanced nanohybrids-based efficient adsorption/extraction and high performance liquid chromatography and fluorescence detection, we successfully developed an excellent microextraction method for the simultaneous determination of both polyaromatic hydrocarbons and bisphenols in roasted meat samples. Several important variables were optimized as follows: Na2 CO3 and tartaric acid as acidic and alkaline sources, 900 μLof the mixed solvent (acetone and hexane at 2:1 by v/v) as the eluent, 5 min of elution time. Under optimized conditions, the novel method gave low limits of detection (0.07-0.30 μg kg-1 ), satisfactory recoveries (86.9-103.9%), and high precision (relative standard deviations of 1.9-6.7%) in roasted lamb, beef, pork, chicken, and sausage samples.
Collapse
Affiliation(s)
- Tingting Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, P.R. China.,Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, P.R. China
| | - Evans AgyeKum
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, P.R. China
| | - Sai Ma
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, P.R. China
| | - Hanzhang Ye
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, P.R. China
| | - Jiani Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, P.R. China
| | - Ming Gao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, P.R. China
| | - Min Ni
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, P.R. China.,Jiangsu Key Laboratory of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, P.R. China
| | - Xiaofan Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, P.R. China
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, P.R. China
| |
Collapse
|
15
|
Singh R, Munya V, Are VN, Nayak D, Chattopadhyay S. A Biocompatible, pH-Sensitive, and Magnetically Separable Superparamagnetic Hydrogel Nanocomposite as an Efficient Platform for the Removal of Cationic Dyes in Wastewater Treatment. ACS OMEGA 2021; 6:23139-23154. [PMID: 34549115 PMCID: PMC8444210 DOI: 10.1021/acsomega.1c02720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
A series of environment-friendly cationic dye adsorbents, namely, pH-sensitive superparamagnetic hydrogel nanocomposite AA-VSA-P/SPIONs systems with different concentrations of superparamagnetic iron oxide nanoparticles (SPIONs; 1.2, 3.2, and 5.2 wt %), was synthesized by free-radical polymerization reaction using two pH-sensitive monomers, acrylic acid (AA) and vinylsulfonic acid (VSA), in an optimum ratio, in the presence of presynthesized SPIONs. The structural properties, thermal stability, and chemical configuration of AA-VSA-P/SPIONs systems with different weight percentages of SPIONs were characterized by XRD, TGA, Raman spectroscopy, and FTIR spectroscopy. The systems show substantial efficiency as dye adsorbents for removing cationic dyes (MB dye) from aqueous solution in neutral to alkaline medium. Further, these systems exhibit easy magnetic separation capabilities from aqueous solutions after dye adsorption, even for a very low weight percentage of SPIONs. The adsorption kinetics, mechanism, and isotherms of these systems were evaluated. The study suggests consistency with the pseudo-second-order kinetic model, following an intraparticle diffusion mechanism, where the heterogeneous surface of the system having different activation energies for adsorption plays the crucial role in dye adsorption via chemisorption for higher pH medium, which was further substantiated by excellent data fit with the Freundlich isotherm model. Biocompatibility and regeneration-ability studies establish the environment-friendliness and cost effectivity of the system.
Collapse
Affiliation(s)
- Rinki Singh
- Department
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Vikas Munya
- Department
of Physics, Indian Institute of Technology
Indore, Simrol, Indore 453552, India
| | - Venkata Narayana Are
- Department
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Debasis Nayak
- Department
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Sudeshna Chattopadhyay
- Department
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
- Department
of Physics, Indian Institute of Technology
Indore, Simrol, Indore 453552, India
- Department
of Metallurgy Engineering and Materials Science, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| |
Collapse
|
16
|
Chu KH. Revisiting the Temkin Isotherm: Dimensional Inconsistency and Approximate Forms. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01788] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Khim Hoong Chu
- Honeychem Research, Newtown, Wellington 6021, New Zealand
| |
Collapse
|
17
|
Tehrim A, Dai M, Wu X, Umair MM, Ali I, Amjed MA, Rong R, Javaid SF, Peng C. Citric acid modified waste cigarette filters for adsorptive removal of methylene blue dye from aqueous solution. J Appl Polym Sci 2021. [DOI: 10.1002/app.50655] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Aafia Tehrim
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education College of Environmental Science and Engineering, Ocean University of China Qingdao China
- School of Environmental and Chemical Engineering Zhaoqing University Zhaoqing China
| | - Min Dai
- School of Environmental and Chemical Engineering Zhaoqing University Zhaoqing China
- Sunwater Environmental Science & Technology Co. Ltd Rizhao China
| | - Xiange Wu
- School of Environmental and Chemical Engineering Zhaoqing University Zhaoqing China
| | - Malik Muhammad Umair
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian China
| | - Imran Ali
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education College of Environmental Science and Engineering, Ocean University of China Qingdao China
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen China
| | - Muhammad Ahsan Amjed
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education College of Environmental Science and Engineering, Ocean University of China Qingdao China
| | - Rong Rong
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education College of Environmental Science and Engineering, Ocean University of China Qingdao China
| | - Sheikh Fahad Javaid
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education College of Environmental Science and Engineering, Ocean University of China Qingdao China
| | - Changsheng Peng
- The Key Lab of Marine Environmental Science and Ecology, Ministry of Education College of Environmental Science and Engineering, Ocean University of China Qingdao China
- School of Environmental and Chemical Engineering Zhaoqing University Zhaoqing China
| |
Collapse
|
18
|
Saifi A, Joseph JP, Singh AP, Pal A, Kumar K. Complexation of an Azo Dye by Cyclodextrins: A Potential Strategy for Water Purification. ACS OMEGA 2021; 6:4776-4782. [PMID: 33644585 PMCID: PMC7905815 DOI: 10.1021/acsomega.0c05684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
The chemistry of the host-guest complex formation has received much attention as a highly efficient approach for use to develop economical adsorbents for water purification. In the present study, the synthesis of three β-cyclodextrin (β-CD) inclusion complexes with the oil orange SS (OOSS) azo dye as a guest molecule and their potential applications in water purification are described. The complexes were synthesized by the coprecipitation method and characterized by Fourier transform infrared (FTIR) spectroscopy, UV-vis spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). FTIR and thermal analyses confirmed the encapsulation of OOSS dye within the hydrophobic cavity of β-CD. The encapsulation of hydrophobic dye inside the β-CD cavity was mainly due to the hydrophobic-hydrophobic interaction. The results showed that the stability of the OOSS dye had been improved after the complexation. The effect of three different compositions of the host-guest complexes was analyzed. The present study demonstrated that the hydrophobic dye could be removed from aqueous solution via inclusion complex formation. Thus, it can play a significant role in removing the highly toxic OOSS dye from the industrial effluent.
Collapse
Affiliation(s)
- Anas Saifi
- CSIR-Central
Scientific Instruments Organisation, Sector 30, Chandigarh 160030, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jojo P. Joseph
- Institute
of Nano Science and Technology, Sector 64, Mohali 160062, Punjab, India
| | - Atul Pratap Singh
- Department
of Chemistry, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| | - Asish Pal
- Institute
of Nano Science and Technology, Sector 64, Mohali 160062, Punjab, India
| | - Kamlesh Kumar
- CSIR-Central
Scientific Instruments Organisation, Sector 30, Chandigarh 160030, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
19
|
Jiang LW, Zeng FT, Zhang Y, Xu MY, Xie ZW, Wang HY, Wu YX, He FA, Jiang HL. Preparation of a novel Fe3O4/graphite oxide nanosheet/citric acid-crosslinked β-cyclodextrin polymer composite to remove methylene blue from water. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2020.12.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Chen D, Shen Y, Wang S, Chen X, Cao X, Wang Z, Li Y. Efficient removal of various coexisting organic pollutants in water based on β-cyclodextrin polymer modified flower-like Fe 3O 4 particles. J Colloid Interface Sci 2021; 589:217-228. [PMID: 33460853 DOI: 10.1016/j.jcis.2020.12.109] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/25/2020] [Accepted: 12/27/2020] [Indexed: 01/17/2023]
Abstract
HYPOTHESIS The construction of porous β-cyclodextrin polymer (β-CDP) modified flower-like Fe3O4 particles (CDP@Fe3O4) is expected to remove various organic pollutants from water, based on the larger specific surface area of flower-like Fe3O4 particles and the active sites provided by β-CDP. With the help of various noncovalent interactions, the removal ability of CDP@Fe3O4 for various water-soluble and water-insoluble organic pollutants were systematically studied. EXPERIMENTS CDP@Fe3O4 were successfully synthesized and applied for the simultaneous removal of various organic pollutants with different electrical properties, structure and hydrophobicity. Adsorption efficiency, adsorption process, adsorption mechanism and the reusability of CDP@Fe3O4 for single pollutant and mixed pollutants were comprehensively investigated. FINDINGS CDP@Fe3O4 exhibited excellent adsorption capabilities for various pollutants. Importantly, when these pollutants were coexisting, CDP@Fe3O4 still maintained a comparable removal ability for various pollutants. Efficient removal of organic pollutants was attributed to varieties of noncovalent interactions between organic pollutants and CDP@Fe3O4, including hydrophobic interactions, hydrogen bonds, π-π and electrostatic interactions. These results revealed that the excellent adsorption ability and convenient regeneration make CDP@Fe3O4 being a potential candidate in various complex organic wastewater purification.
Collapse
Affiliation(s)
- Dafan Chen
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, No. 238 Songling Road, Qingdao 266100, PR China; School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, PR China
| | - Yun Shen
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, No. 238 Songling Road, Qingdao 266100, PR China
| | - Shuangjia Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, No. 238 Songling Road, Qingdao 266100, PR China
| | - Xiuping Chen
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, No. 238 Songling Road, Qingdao 266100, PR China
| | - Xiaorong Cao
- School of Chemistry and Chemical Engineering, Qilu Normal University, Jinan 250200, PR China
| | - Zhining Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, PR China
| | - Yiming Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, No. 238 Songling Road, Qingdao 266100, PR China.
| |
Collapse
|