1
|
Wang T, Guo W, Liu N, Sui G, Guo D, Xu G, Li J, Li Y, Chu D. Liquid nitrogen quenching for efficient Bifunctional electrocatalysts in water Splitting: Achieving four key objectives in one step. J Colloid Interface Sci 2025; 684:21-34. [PMID: 39778305 DOI: 10.1016/j.jcis.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
Herein, a novel liquid nitrogen quenching treatment is proposed to achieve multifaceted modulation involving morphological modulation, lattice tensile strain modulation, metal active centre coordination reconstruction and grain boundary construction within a series of intermetallic compounds modified on a carbon substrate (CoFe-550/C, CoNi-550/C and FeNi3-550/C, where 550 refers to liquid nitrogen quenching temperature and C refers to the carbon substrate). Noteworthily, the optimising intermediate absorption/desorption process is achieved by multifaceted modulation. Consequently, CoFe-550/C, CoNi-550/C and FeNi3-550/C demonstrate considerable overpotential for hydrogen evolution reaction (59.5, 74.5 and 94.5 mV at - 10 mA cm-2) and oxygen evolution reaction (312.5, 365.5 and 333.5 mV at 10 mA cm-2) in an alkaline electrolyte and overpotentials for hydrogen evolution reaction (66.5, 81.5 and 106.5 mV at - 10 mA cm-2) in simulated seawater with 1.0 M KOH + 0.5 M NaCl (89.5, 97.5 and 115.5 mV in 0.5 M NaCl), respectively. In addition, the CoFe-, CoNi- and FeNi3-based electrolysers exhibit prominent overall water-splitting activity in an alkaline environment (1.59, 1.77 and 1.69 V, respectively) at 10 mA cm-2. Overall, the proposed liquid nitrogen quenching strategy opens up new possibilities for obtaining highly active electrocatalysts for the new generation of green energy conversion systems.
Collapse
Affiliation(s)
- Tianqi Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Wenxin Guo
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Ning Liu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Guozhe Sui
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Dongxuan Guo
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China.
| | - Guang Xu
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Jinlong Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China; Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China.
| | - Yue Li
- School of Polymer Science & Engineering, Qingdao University of Science & Technology, Qingdao 266101, China
| | - Dawei Chu
- College of Energy Engineering, Huanghuai University, Zhumadian 463000, China.
| |
Collapse
|
2
|
Prasanseang W, Maineawklang N, Liwatthananukul N, Somsri S, Wattanakit C. Synthesis, Characterization, and CO 2 Methanation Over Hierarchical ZSM-5-NiCoAl Layered Double Hydroxide Nanocomposites: Improvement of C-C Coupling to Ethane. Chemphyschem 2025; 26:e202400926. [PMID: 39656467 DOI: 10.1002/cphc.202400926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/10/2024] [Indexed: 12/28/2024]
Abstract
To date, preparing materials with highly dispersed metal nanoparticles without metal agglomeration on a solid support is challenging. This work presents an alternative approach for synthesizing NiCo species on hierarchical ZSM-5 materials derived from a ZSM-5@NiCoAl-LDHs composite. The designed material was prepared by the growth of a NiCo-layered double hydroxides (LDHs) precursor on the surface of hierarchical ZSM-5 nanosheets. The effect of the weight ratio of NiCo-LDHs precursor to ZSM-5 on the composite properties has been studied. The results show that 45 wt.% LDHs (ZSM-5@NiCoAl-LDHs-45) is the most suitable condition for preparing NiCoAl-LDHs/ZSM-5 composite, which promotes a strong interaction between bimetallic NiCo and hierarchical ZSM-5. The ZSM-5@NiCoAl-LDHs-45 showed a BET surface of 386 m2 g-1, in which the surface area has been re-allocated between microspores and mesopores due to the presence of NiCoAl-LDHs composite. The catalyst was also tested for CO2 methanation at 380 °C under atmospheric hydrogen pressure. The results show that the catalyst could provide CO2 conversion of up to 40 % at WSHV of 2.91 h-1. Interestingly, it could not only promote methane but also provide a high selectivity of ethane, approximately 20.4 %. Moreover, the excellent catalytic stability of ethane production was illustrated over 24 hours of time-on-stream (TOS).
Collapse
Affiliation(s)
- Warot Prasanseang
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Pa Yup Nai, Wang Chan, Rayong, 21210, Thailand
| | - Narasiri Maineawklang
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Pa Yup Nai, Wang Chan, Rayong, 21210, Thailand
| | - Natthawoot Liwatthananukul
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Pa Yup Nai, Wang Chan, Rayong, 21210, Thailand
| | - Supattra Somsri
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Pa Yup Nai, Wang Chan, Rayong, 21210, Thailand
| | - Chularat Wattanakit
- Department of Chemical and Biomolecular Engineering, School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Pa Yup Nai, Wang Chan, Rayong, 21210, Thailand
| |
Collapse
|
3
|
Liu Y, Zhong B, Lawal A. Recovery and utilization of crude glycerol, a biodiesel byproduct. RSC Adv 2022; 12:27997-28008. [PMID: 36320273 PMCID: PMC9523763 DOI: 10.1039/d2ra05090k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022] Open
Abstract
Biodiesel production has increased significantly in the past decade because it has been demonstrated to be a viable alternative and renewable fuel. Consequently, the production of crude glycerol, the main byproduct of the transesterification of lipids to biodiesel, has risen as well. Therefore, the effective recovery and utilization of crude glycerol can provide biodiesel with additional value. In this review, we first summarized the state-of-the-art progress on crude glycerol recovery and purification. Subsequently, numerous approaches have been reviewed for the utilization of crude glycerol, including use as animal feeds, for combustion, anaerobic fermentation, and chemical conversion. Finally, an extensive discussion and outlook is presented in relation to the techniques and processes in the chemical conversion of crude glycerol.
Collapse
Affiliation(s)
- Yujia Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
| | - Biqi Zhong
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
| | - Adeniyi Lawal
- New Jersey Center for MicroChemical Systems, Department of Chemical Engineering and Materials Science, Stevens Institute of Technology Castle Point on Hudson Hoboken NJ 07030 USA
| |
Collapse
|
4
|
Liang X, Liu S, Dong F, Tang Z. Constructing CNT@NiCo Texture Anchoring Pt Nanoparticle Catalyst for Highly Efficient Methanol Electrocatalytic Oxidation**. ChemistrySelect 2022. [DOI: 10.1002/slct.202200373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaolong Liang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation National Engineering Research Center for Fine Petrochemical Intermediates Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
| | - Shuyan Liu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation National Engineering Research Center for Fine Petrochemical Intermediates Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
| | - Fang Dong
- State Key Laboratory for Oxo Synthesis and Selective Oxidation National Engineering Research Center for Fine Petrochemical Intermediates Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
| | - Zhicheng Tang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation National Engineering Research Center for Fine Petrochemical Intermediates Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China
| |
Collapse
|
5
|
Wang Y, Li N, Chen M, Liang D, Li C, Liu Q, Yang Z, Wang J. Glycerol steam reforming over hydrothermal synthetic Ni-Ca/attapulgite for green hydrogen generation. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
6
|
Heterogeneous Catalysts for Conversion of Biodiesel-Waste Glycerol into High-Added-Value Chemicals. Catalysts 2022. [DOI: 10.3390/catal12070767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The valuable products produced from glycerol transformation have become a research route that attracted considerable benefits owing to their huge volumes in recent decades (as a result of biodiesel production as a byproduct) as well as a myriad of chemical and biological techniques for transforming glycerol into high-value compounds, such as fuel additives, biofuels, precursors and other useful chemicals, etc. Biodiesel has presented another challenge in the considerable increase in its byproduct (glycerol). This review provides a recent update on the transformation of glycerol with an exclusive focus on the various catalysts’ performance in designing reaction operation conditions. The different products observed and cataloged in this review involved hydrogen, acetol, acrolein, ethylene glycol, and propylene glycol (1,3-propanediol and 1,2-propanediol) from reforming and dehydration and hydrogenolysis reactions of glycerol conversions. The future prospects and critical challenges are finally presented.
Collapse
|
7
|
Feng M, Dong Q, Wu N, Wen JJ, Wang QY, Tong YC. Adsorption of CO, O2, and H2O by Iron Confined in B-Doped Carbon Nanotubes: Theoretical Study. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422140102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Catalytic Conversion of Glycerol into Hydrogen and Value-Added Chemicals: Recent Research Advances. Catalysts 2021. [DOI: 10.3390/catal11121455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In recent decades, the use of biomass as alternative resources to produce renewable and sustainable biofuels such as biodiesel has gained attention given the situation of the progressive exhaustion of easily accessible fossil fuels, increasing environmental concerns, and a dramatically growing global population. The conventional transesterification of edible, nonedible, or waste cooking oils to produce biodiesel is always accompanied by the formation of glycerol as the by-product. Undeniably, it is essential to economically use this by-product to produce a range of valuable fuels and chemicals to ensure the sustainability of the transesterification process. Therefore, recently, glycerol has been used as a feedstock for the production of value-added H2 and chemicals. In this review, the recent advances in the catalytic conversion of glycerol to H2 and high-value chemicals are thoroughly discussed. Specifically, the activity, stability, and recyclability of the catalysts used in the steam reforming of glycerol for H2 production are covered. In addition, the behavior and performance of heterogeneous catalysts in terms of the roles of active metal and support toward the formation of acrolein, lactic acid, 1,3-propanediol, and 1,2-propanediol from glycerol are reviewed. Recommendations for future research and main conclusions are provided. Overall, this review offers guidance and directions for the sufficient and economical utilization of glycerol to generate fuels and high value chemicals, which will ultimately benefit industry, environment, and economy.
Collapse
|
9
|
Fu J, Zhang Z, Ren Q. The Future of Biomass Utilization Technologies Special Issue Editorial. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jie Fu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard North, Quzhou 324000, China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard North, Quzhou 324000, China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University-Quzhou, 78 Jinhua Boulevard North, Quzhou 324000, China
| |
Collapse
|