1
|
Naseri T, Maleki Z. All-optical switch based on two-dimensional asymmetric electromagnetically induced grating in nanohybrid systems. OPTICS EXPRESS 2025; 33:399-413. [PMID: 39876233 DOI: 10.1364/oe.538371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/26/2024] [Indexed: 01/30/2025]
Abstract
This study investigates (EIG) in a nanohybrid configuration involving a semiconductor quantum dot (SQD) and a core-shell bimetallic nanoparticle coated with graphene. The goal is to optimize interactions between plasmons and excitons. This is achieved by utilizing nanoparticles covered with graphene, which enhances control over surface plasmons. These interactions decrease light absorption by quantum dots. At the same time, they enhance the presence of coherent states and quantum interference. The innovative aspect of this model lies in its ability to produce a two-dimensional asymmetric diffraction grating. This is accomplished by modulating the phase within a closed-loop structure and utilizing the nonlinear multi-wave mixing phenomenon, without needing to adjust other system parameters. More specifically, altering the phase of the incident fields produces an asymmetric diffraction grating with an efficiency exceeding 50%. Similarly, varying the frequency of the probing field results in an asymmetric diffraction grating with efficiencies exceeding 40%. This technology has the potential to enhance optical systems, such as all-optical switches in communications, by simplifying the alteration of laser beam phases and probe field frequencies.
Collapse
|
2
|
Feng Y, Zhu L, Pei A, Zhang S, Liu K, Wu F, Li W. Platinum-palladium-on-reduced graphene oxide as bifunctional electrocatalysts for highly active and stable hydrogen evolution and methanol oxidation reaction. NANOSCALE 2023; 15:16904-16913. [PMID: 37853801 DOI: 10.1039/d3nr04014c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
In the context of the gradual depletion of global fossil fuel resources, it is increasingly necessary to explore new alternative energy. Hydrogen energy has attracted great interest from researchers because of its green and pollution-free characteristics. Moreover, the methanol oxidation reaction (MOR) can combine the hydrogen evolution reaction (HER), replacing the anode reaction (oxygen evolution reaction-OER) in overall water splitting and efficiently producing hydrogen. In this study, platinum-palladium nanoparticles on reduced graphene oxide (PtPd/rGO) were successfully synthesized as HER and MOR bifunctional electrocatalysts under alkaline conditions by the stepwise loading of Pt and Pd bimetallic nanoparticles on rGO using a simple liquid-phase reduction method. PtPd/rGO-2 with 0.99 wt% Pt and 2.86 wt% Pd in the HER has the lowest overpotential (87.16 mV at 100 mA cm-2), with the smallest Tafel slope (18.9 mV dec-1). The exceptional mass activity of PtPd/rGO-2 in the MOR reaches 10.75 A mg-1PtPd, which is 18.22 and 53.75 times greater than that of commercial Pt/C (Pt/C) and commercial Pd/C (Pd/C), respectively. PtPd/rGO-2 is 0.935 V lower in the coupling reaction of HER and MOR (MOR ∥ HER) compared to the overall water splitting (OER ∥ HER) without methanol (10 mA cm-2). This is probably because appropriate Pt and Pd loading exposes many more catalytic sites, and the synergistic interaction between Pt, Pd, and Pt-Pd enhances the catalytic performance. This strategy can be used for the synthesis of novel bifunctional electrocatalysts.
Collapse
Affiliation(s)
- Yingliang Feng
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Chemistry and Chemical engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi, China.
| | - Lihua Zhu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Chemistry and Chemical engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi, China.
| | - An Pei
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Chemistry and Chemical engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi, China.
| | - Sifan Zhang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Chemistry and Chemical engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi, China.
| | - Kunming Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Chemistry and Chemical engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi, China.
| | - Fengshun Wu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Chemistry and Chemical engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi, China.
| | - Wenqi Li
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Chemistry and Chemical engineering, Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiang Xi, China.
| |
Collapse
|
3
|
Ullah S, Ferreira-Neto EP, Khan AA, Medeiros IPM, Wender H. Supported nanostructured photocatalysts: the role of support-photocatalyst interactions. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2023; 22:219-240. [PMID: 36178668 DOI: 10.1007/s43630-022-00299-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/05/2022] [Indexed: 01/12/2023]
Abstract
Heterogeneous photocatalysis employing semiconductor oxide photocatalysts is a sustainable and promising method for environmental remediation and clean energy generation. In this context, nanostructured photocatalysts, with at least one dimension in the 1‒100 nm size regime, have attracted ever-growing attention due to their unique and often enhanced size-dependent physicochemical properties. While their reduced size ensures enhanced photocatalytic performance, the same makes it difficult and time/energy-demanding to remove/recover such nanostructured photocatalysts from aqueous media. This fundamental limitation has paved the way towards developing supported nanophotocatalysts where the active photocatalytic nanostructures are coated on the surface of polymeric or inorganic support materials, often in a core@shell conformation. This arrangement solves the problem of photocatalysts' recovery for effective reuse or recycling and leads to improved and desired target properties due to specific photocatalyst-support interactions. While the enhanced physicochemical properties of supported photocatalysts have been widely studied in many target applications, the role of support-photocatalysts interactions in improving these properties remains unexplored. This review article provides an updated viewpoint on the photocatalyst-support interactions and the resulting unique physiochemical properties important for diverse photochemical applications and the design of practical devices. While exploring the properties of supported nanostructured metal oxide/sulfides photocatalysts such as TiO2 and MoS2, we also briefly discuss the common strategies employed to coat the active nanomaterials on the surface of different supports (organic/polymeric, inorganic, active, inert, and magnetic).
Collapse
Affiliation(s)
- Sajjad Ullah
- Institute of Chemical Sciences, University of Peshawar, PO Box 25120, Peshawar, Pakistan.
| | - Elias P Ferreira-Neto
- Department of Chemistry, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Abrar A Khan
- Institute of Chemical Sciences, University of Peshawar, PO Box 25120, Peshawar, Pakistan
| | - Isaac P M Medeiros
- Nano & Photon Research Group, Laboratory of Nanomaterials and Applied Nanotechnology (LNNA), Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, 79070-900, Brazil
| | - Heberton Wender
- Nano & Photon Research Group, Laboratory of Nanomaterials and Applied Nanotechnology (LNNA), Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, 79070-900, Brazil.
| |
Collapse
|
4
|
Fabrication of a highly stretchable and electrically conductive silicone-embedded composite textile through optimization of the thermal curing process. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Guo Q, Lu X, Fei G, Wang Z, Xia H. Nitrogen-Doped Graphene Aerogel Microspheres Used as Electrocatalyst Supports for Methanol Oxidation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Quanfen Guo
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Xili Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Guoxia Fei
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Zhanhua Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Hesheng Xia
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| |
Collapse
|