1
|
Mashentseva AA, Sutekin DS, Rakisheva SR, Barsbay M. Composite Track-Etched Membranes: Synthesis and Multifaced Applications. Polymers (Basel) 2024; 16:2616. [PMID: 39339079 PMCID: PMC11435613 DOI: 10.3390/polym16182616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Composite track-etched membranes (CTeMs) emerged as a versatile and high-performance class of materials, combining the precise pore structures of traditional track-etched membranes (TeMs) with the enhanced functionalities of integrated nanomaterials. This review provides a comprehensive overview of the synthesis, functionalization, and applications of CTeMs. By incorporating functional phases such as metal nanoparticles and conductive nanostructures, CTeMs exhibit improved performance in various domains. In environmental remediation, CTeMs effectively capture and decompose pollutants, offering both separation and detoxification. In sensor technology, they have the potential to provide high sensitivity and selectivity, essential for accurate detection in medical and environmental applications. For energy storage, CTeMs may be promising in enhancing ion transport, flexibility, and mechanical stability, addressing key issues in battery and supercapacitor performance. Biomedical applications may benefit from the versality of CTeMs, potentially supporting advanced drug delivery systems and tissue engineering scaffolds. Despite their numerous advantages, challenges remain in the fabrication and scalability of CTeMs, requiring sophisticated techniques and meticulous optimization. Future research directions include the development of cost-effective production methods and the exploration of new materials to further enhance the capabilities of CTeMs. This review underscores the transformative potential of CTeMs across various applications and highlights the need for continued innovation to fully realize their benefits.
Collapse
Affiliation(s)
- Anastassiya A. Mashentseva
- The Institute of Nuclear Physics of the Republic of Kazakhstan, Almaty 050032, Kazakhstan
- Department of Nuclear Physics, New Materials, and Technologies, L. N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan;
| | - Duygu S. Sutekin
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey;
| | - Saniya R. Rakisheva
- Department of Nuclear Physics, New Materials, and Technologies, L. N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan;
| | - Murat Barsbay
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey;
| |
Collapse
|
2
|
Mani AM, Chaudhury S, Meena G. Current Density Dependence of Transport Selectivity of Metal Ions in the Electrodriven Process across the Cation Exchange Membrane. J Phys Chem B 2023; 127:8879-8887. [PMID: 37792016 DOI: 10.1021/acs.jpcb.3c05051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Understanding the mechanisms leading to the selective transport of cations in an electrodriven process across a cation exchange membrane is important to design and control the potential gradient-based separation process. In this study, a comprehensive description of the current density (I, over a broad current regime) dependence of transport selectivity (Si) between cations of the same/different valence is presented. The role of conventional transport mechanisms such as diffusion, electromigration, and electroconvection in controlling the Si was identified theoretically as well as by multiple experimental approaches. These parameters were found to be dependent on the limiting current density (Ilim). In general, irrespective of the cations involved, Si (over Na+) decreased gradually with increasing I and then increased slowly (and saturated) after Ilim. This extent of variation of Si was heavily dependent on the charge and hydration state of the cations. At I < Ilim, both diffusion and electromigration processes contributed and, notably, the sorption selectivity outweighed the migration selectivity. At I → Ilim, diffusion was the solitary mechanism responsible for cation transport and migration selectivity was the major contributor in Si. At I > Ilim, as also validated by the Peclet numbers, the overall transport was dictated by electroconvection.
Collapse
Affiliation(s)
- Agnes Maria Mani
- Chemical Sciences Department, Homi Bhabha National Institute, Mumbai 400094, India
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Sanhita Chaudhury
- Chemical Sciences Department, Homi Bhabha National Institute, Mumbai 400094, India
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Ghanshyam Meena
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| |
Collapse
|
3
|
Kumar A, Chaudhury S. Transport selectivities in ion-exchange membranes: Heterogeneity effect and analytical method dependence. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2112224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Ashwani Kumar
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Sanhita Chaudhury
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, India
- Department of Chemical Sciences, Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
4
|
Ahmed S, Zhang Y, Wu B, Zheng Z, Leung CF, Choy TY, Kwok YT, Lo IMC. Scaled-up development of magnetically recyclable Fe 3O 4/La(OH) 3 composite for river water phosphate removal: From bench-scale to pilot-scale study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148281. [PMID: 34119786 DOI: 10.1016/j.scitotenv.2021.148281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/19/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
The use of magnetic lanthanum-based materials for phosphate removal from river water has gained increasing attention. However, challenges to produce and use lanthanum-based materials in large-scale or pilot-scale studies remain. In this work, a kilogram-scale Fe3O4/La(OH)3 magnetically recyclable composite for removing phosphate from river water was developed through a low-temperature precipitation route. The composite was used to remove phosphate from river water at both bench- and pilot-scales. Based on the bench-scale tests, the developed Fe3O4/La(OH)3 composite was found to have excellent magnetic particle separation efficiency (>98%) and a sorption capacity of 11.77 mg/g for phosphate. A 1.0 g/L dosage of the composite in the river water sample was able to selectively reduce the phosphate level from 0.089 to 0.005 mg/L in 60 min over five consecutive adsorption cycles. At the pilot-scale, the Fe3O4/La(OH)3 composite only achieved 36.0% phosphate removal efficiency, which is considerably different from the bench-scale results over an operational time of five months and a total treatment volume of 300 m3. This significantly reduced removal efficiency is mainly attributable to turbidity, suspended solids, and organic matter in the river water and the deteriorated magnetic separation efficiency. This study revealed potential challenges and shed new insights on moving magnetic nanocomposite-based technology from the bench-scale to the pilot-scale, which can inspire new designs for the application of similar technology.
Collapse
Affiliation(s)
- Saeed Ahmed
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yanyang Zhang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Baile Wu
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zexiao Zheng
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Chui-Fan Leung
- Water Supplies Department, Hong Kong Special Administrative Region, China
| | - Tak-Yip Choy
- Water Supplies Department, Hong Kong Special Administrative Region, China
| | - Yau-Ting Kwok
- Water Supplies Department, Hong Kong Special Administrative Region, China
| | - Irene M C Lo
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
5
|
Uliana AA, Bui NT, Kamcev J, Taylor MK, Urban JJ, Long JR. Ion-capture electrodialysis using multifunctional adsorptive membranes. Science 2021; 372:296-299. [PMID: 33859036 DOI: 10.1126/science.abf5991] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/15/2021] [Indexed: 12/19/2022]
Abstract
Technologies that can efficiently purify nontraditional water sources are needed to meet rising global demand for clean water. Water treatment plants typically require a series of costly separation units to achieve desalination and the removal of toxic trace contaminants such as heavy metals and boron. We report a series of robust, selective, and tunable adsorptive membranes that feature porous aromatic framework nanoparticles embedded within ion exchange polymers and demonstrate their use in an efficient, one-step separation strategy termed ion-capture electrodialysis. This process uses electrodialysis configurations with adsorptive membranes to simultaneously desalinate complex water sources and capture diverse target solutes with negligible capture of competing ions. Our methods are applicable to the development of efficient and selective multifunctional separations that use adsorptive membranes.
Collapse
Affiliation(s)
- Adam A Uliana
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ngoc T Bui
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jovan Kamcev
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Mercedes K Taylor
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Department of Chemistry, University of California, Berkeley, CA 94720, USA.,Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Jeffrey J Urban
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jeffrey R Long
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA. .,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.,Department of Chemistry, University of California, Berkeley, CA 94720, USA
| |
Collapse
|