Żółtowska S, Bielan Z, Zembrzuska J, Siwińska-Ciesielczyk K, Piasecki A, Zielińska-Jurek A, Jesionowski T. Modification of structured bio‑carbon derived from spongin-based scaffolds with nickel compounds to produce a functional catalyst for reduction and oxidation reactions: Potential for use in environmental protection.
THE SCIENCE OF THE TOTAL ENVIRONMENT 2021;
794:148692. [PMID:
34225146 DOI:
10.1016/j.scitotenv.2021.148692]
[Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/27/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Three different 3D fibrous-like NiO/Ni(OH)2/Ni‑carbonized spongin-based materials were prepared via a simple sorption-reduction method. Depending on the support used, the catalysts were composed of carbon, nickel oxide, nickel hydroxide and zero-valent nickel, with the surface content of the nickel-containing phase in the range 15.2-26.0 wt%. Catalytic studies showed promising activity in the oxidation of phenolic compounds in water and in the reduction of 4-nitrophenol. The oxidation efficiency depends on the substrate used and ranges from 80% for phenol at pH 2 to 99% for 4-chlorophenoxyacetic acid (4-CPA) and methylchlorophenoxypropionic acid (MCPP). In the reduction reaction, all catalysts exhibited superior activity, with rate constants in the range 0.648-1.022 min-1. The work also includes a detailed investigation of reusability and kinetic studies.
Collapse