1
|
Amin NAAM, Mokhter MA, Salamun N, Mohamad MFB, Mahmood WMAW. ANTI-FOULING ELECTROSPUN ORGANIC AND INORGANIC NANOFIBER MEMBRANES FOR WASTEWATER TREATMENT. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2023. [DOI: 10.1016/j.sajce.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
|
2
|
Golubev GS, Sokolov SE, Rokhmanka TN, Bakhtin DS, Borisov IL, Volkov AV. Membranes Based on PTMSP and Hypercrosslinked Polystyrene for Gas Separation and Thermopervaporative Removal of Volatile Organic Compounds from Aqueous Media. MEMBRANES AND MEMBRANE TECHNOLOGIES 2022. [DOI: 10.1134/s2517751622060038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
3
|
Hou R, Wang S, Wang L, Li C, Wang H, Xu Y, Wang C, Pan Y, Xing W. Enhanced CO2 separation performance by incorporating KAUST-8 nanosheets into crosslinked poly(ethylene oxide) membrane. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.123057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
4
|
Liu Z, Zheng W, Li Z, Dai Y, Jiang X, Zhang X, Ruan X, Wu X, He G. Constructing a CO 2-Philic and Highly Permeative Transmission Pathway in Electrospun Fiber Composite Membranes by Introduction of Ether-Oxygen Groups. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhen Liu
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Wenji Zheng
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
- Panjin Institute of Industrial Technology, Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Dalian University of Technology, Panjin 124221, China
| | - Ziheng Li
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian 116023, China
| | - Yan Dai
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian 116023, China
- Panjin Institute of Industrial Technology, Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Dalian University of Technology, Panjin 124221, China
| | - Xiaobin Jiang
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian 116023, China
| | - Xiujuan Zhang
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Xuehua Ruan
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Xuemei Wu
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, Dalian University of Technology, Dalian 116023, China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
- Panjin Institute of Industrial Technology, Liaoning Key Laboratory of Chemical Additive Synthesis and Separation, Dalian University of Technology, Panjin 124221, China
| |
Collapse
|
5
|
Wang G, Chen Y, Pan C, Chen H, Ding S, Chen X. Rapid synthesis of self-standing covalent organic frameworks membrane via polyethylene glycol-assisted space-confined strategy. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Hou R, Eden NT, Fong C, Acharya D, Doherty CM, Gengenbach T, Konstas K, Xie Z, Freeman BD, Hill MR. Enhanced Membrane Performance for Gas Separation by Coupling Effect of the Porous Aromatic Framework (PAF) Incorporation and Photo-Oxidation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c03942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rujing Hou
- Monash Centre for Membrane Innovation, Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3169, Australia
| | - Nathan T. Eden
- Monash Centre for Membrane Innovation, Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3169, Australia
- CSIRO, Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Celesta Fong
- CSIRO, Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Durga Acharya
- CSIRO, Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Cara M. Doherty
- CSIRO, Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Thomas Gengenbach
- CSIRO, Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Kristina Konstas
- CSIRO, Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Zongli Xie
- CSIRO, Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Benny D. Freeman
- Monash Centre for Membrane Innovation, Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3169, Australia
- John J. McKetta Jr. Department of Chemical Engineering, The University of Texas at Austin, 2501 Speedway, Austin, Texas 78712, United States
| | - Matthew R. Hill
- Monash Centre for Membrane Innovation, Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3169, Australia
- CSIRO, Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| |
Collapse
|
7
|
Zheng W, Liu Z, Ding R, Dai Y, Li X, Ruan X, He G. Constructing continuous and fast transport pathway by highly permeable polymer electrospun fibers in composite membrane to improve CO2 capture. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Zhou H, Akram A, Semiao AJ, Malpass-Evans R, Lau CH, McKeown NB, Zhang W. Enhancement of performance and stability of thin-film nanocomposite membranes for organic solvent nanofiltration using hypercrosslinked polymer additives. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Chuah CY, Jiang X, Goh K, Wang R. Recent Progress in Mixed-Matrix Membranes for Hydrogen Separation. MEMBRANES 2021; 11:666. [PMID: 34564483 PMCID: PMC8466440 DOI: 10.3390/membranes11090666] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022]
Abstract
Membrane separation is a compelling technology for hydrogen separation. Among the different types of membranes used to date, the mixed-matrix membranes (MMMs) are one of the most widely used approaches for enhancing separation performances and surpassing the Robeson upper bound limits for polymeric membranes. In this review, we focus on the recent progress in MMMs for hydrogen separation. The discussion first starts with a background introduction of the current hydrogen generation technologies, followed by a comparison between the membrane technology and other hydrogen purification technologies. Thereafter, state-of-the-art MMMs, comprising emerging filler materials that include zeolites, metal-organic frameworks, covalent organic frameworks, and graphene-based materials, are highlighted. The binary filler strategy, which uses two filler materials to create synergistic enhancements in MMMs, is also described. A critical evaluation on the performances of the MMMs is then considered in context, before we conclude with our perspectives on how MMMs for hydrogen separation can advance moving forward.
Collapse
Affiliation(s)
- Chong Yang Chuah
- Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; (C.Y.C.); (X.J.); (K.G.)
| | - Xu Jiang
- Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; (C.Y.C.); (X.J.); (K.G.)
| | - Kunli Goh
- Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; (C.Y.C.); (X.J.); (K.G.)
| | - Rong Wang
- Singapore Membrane Technology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; (C.Y.C.); (X.J.); (K.G.)
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
10
|
Wu D, Hou R, Yi C, Smith SJ, Fu J, Ng D, Doherty CM, Mulder RJ, Xie Z, Hill MR. Enhancing polyimide-based mixed matrix membranes performance for CO2 separation containing PAF-1 and p-DCX. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
Begni F, Lasseuguette E, Paul G, Bisio C, Marchese L, Gatti G, Ferrari MC. Hyper Cross-Linked Polymers as Additives for Preventing Aging of PIM-1 Membranes. MEMBRANES 2021; 11:463. [PMID: 34201424 PMCID: PMC8305886 DOI: 10.3390/membranes11070463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022]
Abstract
Mixed-matrix membranes (MMMs) are membranes that are composed of polymers embedded with inorganic particles. By combining the polymers with the inorganic fillers, improvements can be made to the permeability compared to the pure polymer membranes due to new pathways for gas transport. However, the fillers, such as hyper cross-linked polymers (HCP), can also help to reduce the physical aging of the MMMs composed of a glassy polymer matrix. Here we report the synthesis of two novel HCP fillers, based on the Friedel-Crafts reaction between a tetraphenyl methane monomer and a bromomethyl benzene monomer. According to the temperature and the solvent used during the reaction (dichloromethane (DCM) or dichloroethane (DCE)), two different particle sizes have been obtained, 498 nm with DCM and 120 nm with DCE. The change in the reaction process also induces a change in the surface area and pore volumes. Several MMMs have been developed with PIM-1 as matrix and HCPs as fillers at 3% and 10wt % loading. Their permeation performances have been studied over the course of two years in order to explore physical aging effects over time. Without filler, PIM-1 exhibits the classical aging behavior of polymers of intrinsic microporosity, namely, a progressive decline in gas permeation, up to 90% for CO2 permeability. On the contrary, with HCPs, the physical aging at longer terms in PIM-1 is moderated with a decrease of 60% for CO2 permeability. 13C spin-lattice relaxation times (T1) indicates that this slowdown is related to the interactions between HCPs and PIM-1.
Collapse
Affiliation(s)
- Federico Begni
- Dipartimento di Scienze e Innovazione Tecnologica, Università degli Studi del Piemonte Orientale “Amedeo Avogadro”, Viale Teresa Michel 11, 15121 Alessandria, Italy; (F.B.); (G.P.); (C.B.); (L.M.)
| | - Elsa Lasseuguette
- School of Engineering, University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, UK;
| | - Geo Paul
- Dipartimento di Scienze e Innovazione Tecnologica, Università degli Studi del Piemonte Orientale “Amedeo Avogadro”, Viale Teresa Michel 11, 15121 Alessandria, Italy; (F.B.); (G.P.); (C.B.); (L.M.)
| | - Chiara Bisio
- Dipartimento di Scienze e Innovazione Tecnologica, Università degli Studi del Piemonte Orientale “Amedeo Avogadro”, Viale Teresa Michel 11, 15121 Alessandria, Italy; (F.B.); (G.P.); (C.B.); (L.M.)
- CNR-SCITEC Instituto di Scienze e Tecnologie Chimiche “G. Natta”, Via C. Golgi 19, 20133 Milano, Italy
| | - Leonardo Marchese
- Dipartimento di Scienze e Innovazione Tecnologica, Università degli Studi del Piemonte Orientale “Amedeo Avogadro”, Viale Teresa Michel 11, 15121 Alessandria, Italy; (F.B.); (G.P.); (C.B.); (L.M.)
| | - Giorgio Gatti
- Dipartimento di Scienze e Innovazione Tecnologica, Università degli Studi del Piemonte Orientale “Amedeo Avogadro”, Viale Teresa Michel 11, 15121 Alessandria, Italy; (F.B.); (G.P.); (C.B.); (L.M.)
| | - Maria-Chiara Ferrari
- School of Engineering, University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, UK;
| |
Collapse
|
12
|
Hybrid Microporous Polymeric Materials with Outstanding Permeability and Increased Gas Transport Stability: PTMSP Aging Prevention by Sorption of the Polymerization Catalyst on HCPS. Polymers (Basel) 2021; 13:polym13121922. [PMID: 34207865 PMCID: PMC8229280 DOI: 10.3390/polym13121922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 11/17/2022] Open
Abstract
The influence of hyper-crosslinked polystyrene (HCPS) MacronetTM MN200 on the gas transport properties and aging of the highly permeable glassy polymer poly(1-trimethylsilyl-1-propyne) (PTMSP) was studied and analyzed in detail. The gas transport characteristics of dense PTMSP membranes containing 0-10.0 wt % HCPS were studied. It was shown that the introduction of a small amount of HCPS into the PTMSP matrix led to a 50-60% increase of the permeability coefficients of the material for light gases (N2, O2, CO2) and slowed down the deterioration of polymer transport properties over time. The lowest reduction in gas permeability coefficients (50-57%) was found for PTMSP containing HCPS 5.0 wt % after annealing at 100 °C for 300 h. It was found that HCPS sorbed residues of tantalum-based polymerization catalyst from PTMSP. In order to investigate the influence of catalysts on transport and physical properties of PTMSP, we purified the latter from the polymerization catalyst by addition of 5 wt % HCPS into polymer/chloroform solution. It was shown that sorption on HCPS allowed for almost complete removal of tantalum compounds from PTMSP. The membrane made of PTMSP purified by HCPS demonstrated more stable transport characteristics compared to the membrane made of the initial polymer. HCPS has a complex effect on the aging process of PTMSP. The introduction of HCPS into the polymer matrix not only slowed down the physical aging of PTMSP, but also reduced chemical aging due to removal of active reagents.
Collapse
|
13
|
Park J, Smith SJD, Wood CD, Mulet X, Seo M. Core hyper-cross-linked star polymers from block polymer micelle precursors. Polym Chem 2020. [DOI: 10.1039/d0py01225d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hyper-cross-linking of a core of block polymer micelles produces core cross-linked polymer with a spacious hyper-cross-linked core, which is solution-processible.
Collapse
Affiliation(s)
- Jongmin Park
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Korea
| | - Stefan J. D. Smith
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)
- Australia
- Monash Centre for Membrane Innovation (MCMI)
- Monash University
- Australia
| | - Colin D. Wood
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)
- Australia
| | - Xavier Mulet
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)
- Australia
| | - Myungeun Seo
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Korea
- KAIST Institute for Nanocentury
| |
Collapse
|