1
|
Cai L, Zheng J, Liu L, Zhang G, Lin Y. Elastin-like polypeptide: A novel titanification biomacromolecule for green and ultrafast synthesis of biotitania nanoparticles via biomimetic mineralization. Int J Biol Macromol 2025; 306:141449. [PMID: 40015400 DOI: 10.1016/j.ijbiomac.2025.141449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
Elastin-like polypeptides (ELPs), a temperature-responsive biological macromolecule, is used to develop a novel and eco-friendly strategy for biotitania synthesis. Three ELPs (V9F, KV8F, and K5V4F) are designed and overexpressed in E. coli. Then these recombinant ELPs are purified with high yields by using phase transition-based green ITC method. ELPs present the capabilities of ultrafast formation of biotitania within seconds. The specific activity of ELPs is significantly influenced by the number of lysine residues. K5V4F is the one with the highest specific activity of 56.90, which is 26.34 times higher than that of R5 peptide. Moreover, ELPs-mediated biomimetic titania mineralization can perform in a broad pH range (2.2 ≤ pH ≤ 10.8) at ambient temperatures, however, the optimum condition is near-neutral pH. The biotitania nanoparticles are evidenced to be as solid, spherical, and amorphous by SEM, TEM, and SAED analysis. Based on the unique temperature-responsiveness of ELPs and their excellent biomimetic mineralization abilities, this method may have great potentials to prepare smart biotitania nanomaterials for various application fields, such as biomedical engineering, biomanufacturing, and environmental remediation.
Collapse
Affiliation(s)
- Lixi Cai
- College of Basic Medicine, Putian University, Putian 351100, Fujian, PR China; Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian, PR China; Key Laboratory of Translational Tumor Medicine in Fujian Province, School of Basic Medicine Science, Putian University, Putian 351100, Fujian, PR China
| | - Jinlin Zheng
- College of Basic Medicine, Putian University, Putian 351100, Fujian, PR China; Key Laboratory of Translational Tumor Medicine in Fujian Province, School of Basic Medicine Science, Putian University, Putian 351100, Fujian, PR China
| | - Lixing Liu
- College of Basic Medicine, Putian University, Putian 351100, Fujian, PR China; Key Laboratory of Translational Tumor Medicine in Fujian Province, School of Basic Medicine Science, Putian University, Putian 351100, Fujian, PR China
| | - Guangya Zhang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian, PR China.
| | - Yuanqing Lin
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian, PR China; College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, Fujian, PR China.
| |
Collapse
|
2
|
Liu G, Yuan H, Chen Y, Mao L, Yang C, Zhang R, Zhang G. Magnetic silica-coated cutinase immobilized via ELPs biomimetic mineralization for efficient nano-PET degradation. Int J Biol Macromol 2024; 279:135414. [PMID: 39245124 DOI: 10.1016/j.ijbiomac.2024.135414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/12/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
The proliferation of nano-plastic particles (NPs) poses severe environmental hazards, urgently requiring effective biodegradation methods. Herein, a novel method was developed for degrading nano-PET (polyethylene terephthalate) using immobilized cutinases. Nano-PET particles were prepared using a straightforward method, and biocompatible elastin-like polypeptide-magnetic nanoparticles (ELPs-MNPs) were obtained as magnetic cores via biomimetic mineralization. Using one-pot synthesis with the cost-effective precursor tetraethoxysilane (TEOS), silica-coated magnetically immobilized ELPs-tagged cutinase (ET-C@SiO2@MNPs) were produced. ET-C@SiO2@MNPs showed rapid magnetic separation within 30 s, simplifying recovery and reuse. ET-C@SiO2@MNPs retained 86 % of their initial activity after 11 cycles and exhibited superior hydrolytic capabilities for nano-PET, producing 0.515 mM TPA after 2 h of hydrolysis, which was 96.6 % that of free enzymes. Leveraging ELPs biomimetic mineralization, this approach offers a sustainable and eco-friendly solution for PET-nanoplastic degradation, highlighting the potential of ET-C@SiO2@MNPs in effective nanoplastic waste management and contributing to environmental protection and sustainable development.
Collapse
Affiliation(s)
- Guanzhang Liu
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Hang Yuan
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Yaxin Chen
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China; School of Chemistry and Molecular Biology, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Lei Mao
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Chun Yang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Ruifang Zhang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Guangya Zhang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China.
| |
Collapse
|
3
|
Ge H, Liu X, Yuan H, Zhang G. Biomimetic one-pot preparation of surface biofunctionalized silica-coated magnetic composites for dual enzyme oriented immobilization without pre-purification. Enzyme Microb Technol 2023; 164:110169. [PMID: 36508943 DOI: 10.1016/j.enzmictec.2022.110169] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Surface functioned magnetic silica particles are efficient carriers to achieve facilitated separation and recycling of biocatalysts. However, traditional methods of modifying magnetic silica particles required time-costly sequential coating and surface modification steps and toxic solvents. Herein, a green and efficient routine was proposed to prepare the surface modified silica-coated magnetic microspheres (SCEs@SiO2 @Fe3O4) in one-pot. The elastin-like polypeptides (ELPs)-SpyCatcher chimera (SCEs) were purified by inverse transition cycling with high yield (275 mg/L) and incorporated into the magnetic silica spheres based on the biomimetic silicification capability of ELPs as proved by the EDS and SEM mapping. No SCEs leaked was observed within 48 h, indicating excellent stability in buffer. Then, the biofunctionalized carriers were used to purify and immobilize the target dual enzymes (xylanase-linker-SpyTag-linker-lichenase, bienzymes) directly from the crude cell lysis solution by the spontaneous isopeptide bond reaction between SpyCatcher and SpyTag. The immobilized bienzymes were sphere-like magnetic silica particles with uniform size, which had good magnetic responsiveness. The immobilization yield, immobilization efficiency and activity recovery for xylanase were 86%, 84 % and 72 %, while for lichenase was 92 %, 86 % and 79 %, respectively. Besides, the immobilized bienzymes showed good reusability (>60 %, 10 times for xylanase, >95 %, 8 times for lichenase). The SCEs modified silica-coated magnetic microspheres are expected to provide versatile platforms for single-step of purification and immobilization of multienzymes, offering great potentials in the field of biocatalysis.
Collapse
Affiliation(s)
- Huihua Ge
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China.
| | - Xin Liu
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China.
| | - Hang Yuan
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China.
| | - Guangya Zhang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China.
| |
Collapse
|
4
|
Qiu Y, Lin Y, Zeng B, Qin P, Yi Z, Zhang G. Revealing the role of tunable amino acid residues in elastin-like polypeptides (ELPs)-mediated biomimetic silicification. Int J Biol Macromol 2023; 227:105-112. [PMID: 36539170 DOI: 10.1016/j.ijbiomac.2022.12.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Elastin-like polypeptides (ELPs) are attractive materials for the green preparation of silica nanoparticles via biomimetic silicification. However, the critical factors affecting the ELP-mediated silicification remain unclear. Herein, the role of tunable amino acid residues of ELPs in silicification was studied using three ELPs (ELPs[V9F-40], ELPs[KV8F-40], and ELPs[K5V4F-40]) and their fusion proteins (ELPs[V9F-40]-SpyCatcher, ELPs[KV8F-40]-SpyCatcher, and ELPs[K5V4F-40]-SpyCatcher) with different contents of lysine residues. Bioinformatics methods were employed for the first time to reveal the key physicochemical parameters correlated with silicification. The specific activity of ELPs was increased with the promotion of lysine content with a high correlation coefficient (R = 0.899). Furthermore, exogenous acidic protein SpyCatcher would hinder the interactions between the silica precursors and ELPs, leading to the significantly decrease in specific activity. The isoelectric point (pI) of ELPs presented the highest correlation to silicification with a coefficient of 0.963. The charges of the ELPs [K5V4F-40] at different pH were calculated based on the sequence or structure. Interestingly, the excellent correlation between charges based on structure and specific activity was obtained. Collectively, the novel methods developed here may pave a new way for rational design of ELPs or other peptides for efficient and green preparation of silica nanomaterials for biomedicine, biocatalysis, and biosensor.
Collapse
Affiliation(s)
- Yue Qiu
- Faculty of Food Science and Technology, Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, Jiangsu, China; Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian, China
| | - Yuanqing Lin
- College of Environment and Public Health, Xiamen Huaxia University, Xiamen 361024, Fujian, China.
| | - Bo Zeng
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Peiliang Qin
- Department of Science and Technology Industry Division, Suzhou Polytechnical Institute of Agriculture, Suzhou, Jiangsu 215008, China
| | - Zhiwei Yi
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian, China; Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Guangya Zhang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian, China.
| |
Collapse
|
5
|
Yuan H, Liu G, Chen Y, Yi Z, Jin W, Zhang G. A versatile tag for simple preparation of cutinase towards enhanced biodegradation of polyethylene terephthalate. Int J Biol Macromol 2023; 225:149-161. [PMID: 36403765 DOI: 10.1016/j.ijbiomac.2022.11.126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/26/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
Abstract
Enzymatic degradation of polyethylene terephthalate (PET) suffered from challenges such as complex and costly enzyme preparation, difficult access to PET substrates, poor reusability of free enzymes and sometimes MHET inhibitions. Herein, we propose an "all-in-one" strategy to address these issues with a well-designed elastin-like polypeptides (ELPs) tag. The preparation of the ELPs-tagged cutinase (ET-C) was efficient and easy to scale up by centrifugation, with an activity recovery of 57.55 % and a yield of 160 mg/L. Besides, the activity of the ET-C was 1.3 and 1.66-fold higher in degrading PET micro- and macro-plastics compared to wild-type cutinase. The self-immobilized cutinase (ET-C@SiO2) obtained by the ELPs-mediated biosilicification exhibited high loading capacity, activity, and thermostability and maintained 77.65 % of the original activity after 10 reuses. Interestingly, the product of the ET-C was TPA, whereas the wild-type was TPA and MHET. This is a simple way to release the intermediates inhibition compared with the existing methods. Our results demonstrated the feasibility of the versatile ELPs tag, which will pave an alternative economic way for scalable PET biodegradation.
Collapse
Affiliation(s)
- Hang Yuan
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Guanzhang Liu
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Yaxin Chen
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Zhiwei Yi
- Third Institute of Oceanography, Ministry of Nature Resources, Xiamen 361005, Fujian Province, PR China
| | - Wenhui Jin
- Third Institute of Oceanography, Ministry of Nature Resources, Xiamen 361005, Fujian Province, PR China
| | - Guangya Zhang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China.
| |
Collapse
|