1
|
Bindu A, Bhadra S, Nayak S, Khan R, Prabhu AA, Sevda S. Bioelectrochemical biosensors for water quality assessment and wastewater monitoring. Open Life Sci 2024; 19:20220933. [PMID: 39220594 PMCID: PMC11365470 DOI: 10.1515/biol-2022-0933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024] Open
Abstract
Bioelectrochemical biosensors offer a promising approach for real-time monitoring of industrial bioprocesses. Many bioelectrochemical biosensors do not require additional labelling reagents for target molecules. This simplifies the monitoring process, reduces costs, and minimizes potential contamination risks. Advancements in materials science and microfabrication technologies are paving the way for smaller, more portable bioelectrochemical biosensors. This opens doors for integration into existing bioprocessing equipment and facilitates on-site, real-time monitoring capabilities. Biosensors can be designed to detect specific heavy metals such as lead, mercury, or chromium in wastewater. Early detection allows for the implementation of appropriate removal techniques before they reach the environment. Despite these challenges, bioelectrochemical biosensors offer a significant leap forward in wastewater monitoring. As research continues to improve their robustness, selectivity, and cost-effectiveness, they have the potential to become a cornerstone of efficient and sustainable wastewater treatment practices.
Collapse
Affiliation(s)
- Anagha Bindu
- Department of Biotechnology, National Institute of Technology Warangal, Warangal506004, Telangana, India
| | - Sudipa Bhadra
- Department of Biotechnology, National Institute of Technology Warangal, Warangal506004, Telangana, India
| | - Soubhagya Nayak
- Department of Biotechnology, National Institute of Technology Warangal, Warangal506004, Telangana, India
| | - Rizwan Khan
- Department of Biotechnology, National Institute of Technology Warangal, Warangal506004, Telangana, India
| | - Ashish A. Prabhu
- Department of Biotechnology, National Institute of Technology Warangal, Warangal506004, Telangana, India
| | - Surajbhan Sevda
- Department of Biotechnology, National Institute of Technology Warangal, Warangal506004, Telangana, India
| |
Collapse
|
2
|
Bilal A, Yasin M, Akhtar FH, Gilani MA, Alhmohamadi H, Younas M, Mushtaq A, Aslam M, Hassan M, Nawaz R, Aqsha A, Sunarso J, Bilad MR, Khan AL. Enhancing Water Purification by Integrating Titanium Dioxide Nanotubes into Polyethersulfone Membranes for Improved Hydrophilicity and Anti-Fouling Performance. MEMBRANES 2024; 14:116. [PMID: 38786950 PMCID: PMC11123263 DOI: 10.3390/membranes14050116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/25/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Water pollution remains a critical concern, one necessitated by rapidly increasing industrialization and urbanization. Among the various strategies for water purification, membrane technology stands out, with polyethersulfone (PES) often being the material of choice due to its robust mechanical properties, thermal stability, and chemical resistance. However, PES-based membranes tend to exhibit low hydrophilicity, leading to reduced flux and poor anti-fouling performance. This study addresses these limitations by incorporating titanium dioxide nanotubes (TiO2NTs) into PES nanofiltration membranes to enhance their hydrophilic properties. The TiO2NTs, characterized through FTIR, XRD, BET, and SEM, were embedded in PES at varying concentrations using a non-solvent induced phase inversion (NIPS) method. The fabricated mixed matrix membranes (MMMs) were subjected to testing for water permeability and solute rejection capabilities. Remarkably, membranes with a 1 wt% TiO2NT loading displayed a significant increase in pure water flux, from 36 to 72 L m2 h-1 bar-1, a 300-fold increase in selectivity compared to the pristine sample, and a dye rejection of 99%. Furthermore, long-term stability tests showed only a slight reduction in permeate flux over a time of 36 h, while dye removal efficiency was maintained, thus confirming the membrane's stability. Anti-fouling tests revealed a 93% flux recovery ratio, indicating excellent resistance to fouling. These results suggest that the inclusion of TiO2 NTs offers a promising avenue for the development of efficient and stable anti-fouling PES-based membranes for water purification.
Collapse
Affiliation(s)
- Ayesha Bilal
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Muhammad Yasin
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan; (A.M.); (M.A.)
| | - Faheem Hassan Akhtar
- Department of Chemistry and Chemical Engineering, Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan;
| | - Mazhar Amjad Gilani
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| | - Hamad Alhmohamadi
- Department of Chemical Engineering, Faculty of Engineering, Islamic University of Madinah, Madinah 42351, Saudi Arabia;
| | - Mohammad Younas
- Department of Chemical Engineering, Faculty of Mechanical, Chemical and Industrial Engineering, University of Engineering and Technology, Peshawar 25120, Pakistan;
| | - Azeem Mushtaq
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan; (A.M.); (M.A.)
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Muhammad Aslam
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan; (A.M.); (M.A.)
| | - Mehdi Hassan
- Department of Chemistry, University of Baltistan, Skardu 16100, Pakistan
| | - Rab Nawaz
- Center for Applied Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology, Hawally 32093, Kuwait;
| | - Aqsha Aqsha
- Department of Bioenergy Engineering and Chemurgy, Faculty of Industrial Technology, Institute Teknologi Bandung, Bandung 40132, Indonesia;
| | - Jaka Sunarso
- Research Centre for Sustainable Technologies, Faculty of Engineering, Computing and Science, Swinburne University of Technology, Jalan Simpang Tiga, Kuching 93350, Sarawak, Malaysia;
| | - Muhammad Roil Bilad
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Gadong BE 1410, Brunei
| | - Asim Laeeq Khan
- Department of Chemical Engineering, Faculty of Engineering, Islamic University of Madinah, Madinah 42351, Saudi Arabia;
| |
Collapse
|
3
|
Xu N, Tang Z, Jiang YP, Fang J, Zhang L, Lai X, Sun QJ, Fan JM, Tang XG, Liu QX, Jian JK. Highly Sensitive Ratiometric Fluorescent Flexible Sensor Based on the RhB@ZIF-8@PVDF Mixed-Matrix Membrane for Broad-Spectrum Antibiotic Detection. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37924319 DOI: 10.1021/acsami.3c12756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Antibiotics play an essential role in the treatment of various diseases. However, the overuse of antibiotics has led to the pollution of water bodies and food safety, affecting human health. Herein, we report a dual-emission MOF-based flexible sensor for the detection of antibiotics in water, which was prepared by first encapsulating rhodamine B (RhB) by a zeolite imidazolium ester skeleton (ZIF-8) and then blending it with polyvinylidene difluoride (PVDF). The luminescent properties, structural tunability, and flexible porosity of the MOF-based composites were combined with the processability and flexibility of polymers to prepare luminescent membranes. The sensor is capable of dual-emission ratiometric fluorescence sensing of nitrofurantoin (NFT) and oxytetracycline (OTC), exhibiting sensitive detection of fluorescence burst and fluorescence enhancement, respectively, with detection limits of 0.012 μM and 8.9 nM. With the advantages of visual detection, high sensitivity, short detection time, and simplicity, the highly sensitive ratiometric fluorescent flexible sensor has great potential for detecting antibiotics in an aqueous environment. It will further stimulate interest in luminescent MOF-based mixed matrix membranes and their sensing applications.
Collapse
Affiliation(s)
- Nuan Xu
- School of Physics and Optoelectric Engineering, Guangdong University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Zhenhua Tang
- School of Physics and Optoelectric Engineering, Guangdong University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Yan-Ping Jiang
- School of Physics and Optoelectric Engineering, Guangdong University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Junlin Fang
- School of Physics and Optoelectric Engineering, Guangdong University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Li Zhang
- School of Physics and Optoelectric Engineering, Guangdong University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Xiaofang Lai
- School of Physics and Optoelectric Engineering, Guangdong University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Qi-Jun Sun
- School of Physics and Optoelectric Engineering, Guangdong University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Jing-Min Fan
- School of Automation, Guangdong University of Technology, Guangzhou 510006, China
| | - Xin-Gui Tang
- School of Physics and Optoelectric Engineering, Guangdong University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Qiu-Xiang Liu
- School of Physics and Optoelectric Engineering, Guangdong University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Ji-Kang Jian
- School of Physics and Optoelectric Engineering, Guangdong University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| |
Collapse
|
4
|
Rabiee N, Sharma R, Foorginezhad S, Jouyandeh M, Asadnia M, Rabiee M, Akhavan O, Lima EC, Formela K, Ashrafizadeh M, Fallah Z, Hassanpour M, Mohammadi A, Saeb MR. Green and Sustainable Membranes: A review. ENVIRONMENTAL RESEARCH 2023; 231:116133. [PMID: 37209981 DOI: 10.1016/j.envres.2023.116133] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/21/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
Membranes are ubiquitous tools for modern water treatment technology that critically eliminate hazardous materials such as organic, inorganic, heavy metals, and biomedical pollutants. Nowadays, nano-membranes are of particular interest for myriad applications such as water treatment, desalination, ion exchange, ion concentration control, and several kinds of biomedical applications. However, this state-of-the-art technology suffers from some drawbacks, e.g., toxicity and fouling of contaminants, which makes the synthesis of green and sustainable membranes indeed safety-threatening. Typically, sustainability, non-toxicity, performance optimization, and commercialization are concerns centered on manufacturing green synthesized membranes. Thus, critical issues related to toxicity, biosafety, and mechanistic aspects of green-synthesized nano-membranes have to be systematically and comprehensively reviewed and discussed. Herein we evaluate various aspects of green nano-membranes in terms of their synthesis, characterization, recycling, and commercialization aspects. Nanomaterials intended for nano-membrane development are classified in view of their chemistry/synthesis, advantages, and limitations. Indeed, attaining prominent adsorption capacity and selectivity in green-synthesized nano-membranes requires multi-objective optimization of a number of materials and manufacturing parameters. In addition, the efficacy and removal performance of green nano-membranes are analyzed theoretically and experimentally to provide researchers and manufacturers with a comprehensive image of green nano-membrane efficiency under real environmental conditions.
Collapse
Affiliation(s)
- Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, 6150, Australia; Department of Physics, Sharif University of Technology, Tehran, P.O. Box 11155-9161, Iran.
| | - Rajni Sharma
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Sahar Foorginezhad
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Lulea University of Technology, Department of Energy Science and Mathematics, Energy Science, 97187, Lulea, Sweden
| | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, University of Tehran, Tehran, Iran
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia.
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, Tehran, P.O. Box 11155-9161, Iran
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Krzysztof Formela
- Department of Polymer Technology, Faculty of Chemistry, Gdánsk University of Technology, G. Narutowicza 11/12, 80-233, Gdánsk, Poland
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zari Fallah
- Faculty of Chemistry, University of Mazandaran, P. O. Box 47416, 95447, Babolsar, Iran
| | - Mahnaz Hassanpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Abbas Mohammadi
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdánsk University of Technology, G. Narutowicza 11/12, 80-233, Gdánsk, Poland
| |
Collapse
|
5
|
Ghanbari R, Nazarzadeh Zare E, Paiva-Santos AC, Rabiee N. Ti 3C 2Tx MXene@MOF decorated polyvinylidene fluoride membrane for the remediation of heavy metals ions and desalination. CHEMOSPHERE 2023; 311:137191. [PMID: 36368543 DOI: 10.1016/j.chemosphere.2022.137191] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/25/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Nowadays, the evolution of two-dimensional materials like transition metal carbides (MXene) prepares a novel path to surpass the "trade-off" between the membrane permeation and rejection rates. Based on water swelling and oxidation vulnerability, MXene membranes showed vivid defects such as inadequate stability, detrimental adsorption, and haphazardly stacked nanosheets. Here, we prepared Ti3C2Tx MXene@metal-organic frameworks nanosheets from aminated metal-organic framework-101 (NH2-MIL-101(Al)) via the in-situ growth method and incorporated them into the thin-film polymer to acquire desirable MXene nanosheets with tailor-made structures. The earned modified thin-film nanocomposite membrane showed high salt rejection for Na2SO4 (98.6 ± 0.5%), MgSO4 (96.9 ± 0.7%), MgCl2 (84.5 ± 0.8%), and NaCl (82.5 ± 0.8%), and also showed an improved permeation rate by three times (17.1 ± 0.2 L m-2. h-1. bar-1). Concurrently, the rejection rate of five different types of heavy metal ions (Ni2+, Cd2+, Mn2+, Cu2+, and Zn2+) was tested and denoted more than a 95.2 ± 0.5% rejection rate for all of them, notably high for Mn2+ (97.6 ± 0.4%). After modification, the flux recovery rate was as high as 95.3 ± 0.4%, denoting more than 30% improvement; besides, anti-compactness features enhanced by nearly 34 ± 0.7%. The long-term water permeation kept 91.5 ± 0.9% of its initial rate indicating almost 40 ± 0.8% enhancement. In addition, the rejection performance of Na2SO4 for the optimized membrane was more than 97% even after two weeks.
Collapse
Affiliation(s)
- Roham Ghanbari
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | | | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea.
| |
Collapse
|
6
|
Zhang Y, Yuan ZL, Deng XY, Wei HD, Wang WL, Xu Z, Feng Y, Shi X. Metal-organic framework mixed-matrix membrane-based extraction combined HPLC for determination of bisphenol A in milk and milk packaging. Food Chem 2022; 386:132753. [PMID: 35367801 DOI: 10.1016/j.foodchem.2022.132753] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 03/02/2022] [Accepted: 03/18/2022] [Indexed: 11/29/2022]
Abstract
The residues of bisphenol A (BPA) in milk packaging may transfer to milk, adversely affecting the human endocrine system. Consequently, to analyse or monitor BPA, it is imperative to develop rapid and effective approaches to BPA extraction from milk and milk packing as BPA is usually present in trace levels. Herein, we developed a rapid, simple, and low-cost dispersive-membrane-solid-phase-extraction (DME) for BPA with MIL-101(Cr) mixed-matrix-membrane (MMM). The MMM had large surface area (1322.09 m2/g) and pore volume (0.65 cm3/g), possessed great extraction efficiency of BPA, and kept more than 90% extraction efficiency after 20 times of reuse. Using the developed MIL-101(Cr)-MMM-based DME coupled with HPLC-fluorescence detector, we received an adequate linearity in the range of 0.1 ∼ 50 μg/L BPA and a limit of detection as low as 16 ng/L under optimized conditions. The recoveries of BPA in milk and milk bottles were from 74.2% to 110.6%, with RSDs less than 9.4%.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Zhi-Liang Yuan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xin-Yu Deng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao-Dong Wei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wen-Long Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhenghua Xu
- Huangpu Customs Technology Center, Guangzhou 510770, China
| | - Yongwei Feng
- Technology Innovation Center of Special Food for State Market Regulation, Wuxi Food Safety Inspection and Test Center, Wuxi 214100, China.
| | - Xueli Shi
- Shijiazhuang City Maternal and Child Health Hospital, Shijiazhuang 050051, Hebei, China
| |
Collapse
|
7
|
Zou M, Dong M, Zhao T. Advances in Metal-Organic Frameworks MIL-101(Cr). Int J Mol Sci 2022; 23:ijms23169396. [PMID: 36012661 PMCID: PMC9409302 DOI: 10.3390/ijms23169396] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
MIL-101(Cr) is one of the most well-studied chromium-based metal-organic frameworks, which consists of metal chromium ion and terephthalic acid ligand. It has an ultra-high specific surface area, large pore size, good thermal/chemical/water stability, and contains unsaturated Lewis acid sites in its structure. Due to the physicochemical properties and structural characteristics, MIL-101(Cr) has a wide range of applications in aqueous phase adsorption, gas storage and separation, and catalysis. In this review, the latest synthesis of MIL-101(Cr) and its research progress in adsorption and catalysis are reviewed.
Collapse
|
8
|
Sun L, Yin M, Li Z, Tang S. Facile microwave-assisted solvothermal synthesis of rod-like aluminum terephthalate [MIL-53(Al)] for CO2 adsorption. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|