1
|
Chang X, Wu F, Cheng X, Zhang H, He L, Li W, Yin X, Yu J, Liu YT, Ding B. Multiscale Interpenetrated/Interconnected Network Design Confers All-Carbon Aerogels with Unprecedented Thermomechanical Properties for Thermal Insulation under Extreme Environments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308519. [PMID: 37913824 DOI: 10.1002/adma.202308519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/26/2023] [Indexed: 11/03/2023]
Abstract
With ultralight weight, low thermal conductivity, and extraordinary high-temperature resistance, carbon aerogels hold tremendous potential against severe thermal threats encountered by hypersonic vehicles during the in-orbit operation and re-entry process. However, current 3D aerogels are plagued by irreconcilable contradictions between adiabatic and mechanical performance due to monotonicity of the building blocks or uncontrollable assembly behavior. Herein, a spatially confined assembly strategy of multiscale low-dimensional nanocarbons is reported to decouple the stress and heat transfer. The nanofiber framework, a basis for transferring the loading strain, is covered by a continuous thin-film-like layer formed by the aggregation of nanoparticles, which in combination serve as the fundamental structural units for generating an elastic behavior while yielding compartments in aerogels to suppress the gaseous fluid thermal diffusion within distinct partitions. The resulting all-carbon aerogels with a hierarchical cellular structure and quasi-closed cell walls achieve the best thermomechanical and insulation trade-off, exhibiting flyweight density (24 mg cm-3 ), temperature-constant compressibility (-196-1600 °C), and a low thermal conductivity of 0.04 829 W m-1 K-1 at 300 °C. This strategy provides a remarkable thermal protection material in hostile environments for future aerospace exploration.
Collapse
Affiliation(s)
- Xinyi Chang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Fan Wu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xiaota Cheng
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Hao Zhang
- Aerospace Institute of Advanced Material & Processing Technology, Beijing, 100074, China
| | - Lijuan He
- Aerospace Institute of Advanced Material & Processing Technology, Beijing, 100074, China
| | - Wenjing Li
- Aerospace Institute of Advanced Material & Processing Technology, Beijing, 100074, China
| | - Xia Yin
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Yi-Tao Liu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| |
Collapse
|
2
|
Suekuni MT, D’Souza N, Allgeier AM. NMR Relaxometry Studies on the Drying Kinetics of Cellulose Nanofibers. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Murilo Toledo Suekuni
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Nicole D’Souza
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| | - Alan M. Allgeier
- Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
3
|
Hu XL, Shang Y, Yan KC, Sedgwick AC, Gan HQ, Chen GR, He XP, James TD, Chen D. Low-dimensional nanomaterials for antibacterial applications. J Mater Chem B 2021; 9:3640-3661. [PMID: 33870985 DOI: 10.1039/d1tb00033k] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The excessive use of antibiotics has led to a rise in drug-resistant bacteria. These "superbugs" are continuously emerging and becoming increasingly harder to treat. As a result, new and effective treatment protocols that have minimal risks of generating drug-resistant bacteria are urgently required. Advanced nanomaterials are particularly promising due to their drug loading/releasing capabilities combined with their potential photodynamic/photothermal therapeutic properties. In this review, 0-dimensional, 1-dimensional, 2-dimensional, and 3-dimensional nanomaterial-based systems are comprehensively discussed for bacterial-based diagnostic and treatment applications. Since the use of these platforms as antibacterials is relatively new, this review will provide appropriate insight into their construction and applications. As such, we hope this review will inspire researchers to explore antibacterial-based nanomaterials with the aim of developing systems for clinical applications.
Collapse
Affiliation(s)
- Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Ying Shang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Kai-Cheng Yan
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| | - Adam C Sedgwick
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA
| | - Hui-Qi Gan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Guo-Rong Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Rd, Shanghai 200237, China.
| | - Tony D James
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK. and School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Daijie Chen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, China.
| |
Collapse
|
4
|
Zhao LH, Jin YF, Wang ZG, Ren JW, Jia LC, Yan DX, Li ZM. Highly Thermally Conductive Fluorinated Graphene/Aramid Nanofiber Films with Superior Mechanical Properties and Thermostability. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01260] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Li-Hua Zhao
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China
| | - Yi-Fei Jin
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China
| | - Zhi-Guo Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jun-Wen Ren
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China
| | - Li-Chuan Jia
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China
| | - Ding-Xiang Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|