1
|
Yi L, Wang H, Ren X, Liu G, Nian H, Zheng Z, Wu F. Enhancing Cr(vi) removal performance of Ti 3C 2T x through structural modification by using a spray freezing method. RSC Adv 2024; 14:28320-28331. [PMID: 39239282 PMCID: PMC11375417 DOI: 10.1039/d4ra04640d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/16/2024] [Indexed: 09/07/2024] Open
Abstract
Structural modification is expected to be a facile way to enhance the adsorption performance of MXene. In this work, the structural modification of Ti3C2T x was carried out by a spray freezing method, and two kinds of nano-structure (spherical and flaky) of Ti3C2T x were prepared by adjusting the solution concentration of Ti3C2T x . Then the Cr(vi) adsorption capacity and removal efficiency of the spherical and flaky Ti3C2T x was investigated, respectively. It is found that flaky Ti3C2T x was produced with a Ti3C2T x concentration of 3 mg mL-1, while spherical Ti3C2T x was obtained with a concentration of 6 mg mL-1. The long diameter of flaky Ti3C2T x is about 8-10 μm, and the specific surface area is 17.81 m2 g-1. While spherical Ti3C2T x had a diameter of about 1-4 μm and a specific surface area of 17.07 m2 g-1. The optimized structure of flaky and spherical Ti3C2T x improves the maximum adsorption capacity by 97% and 33%, respectively, compared with the few-layer Ti3C2T x . The maximum adsorption capacity of flaky Ti3C2T x was 928 mg g-1, while that of spherical Ti3C2T x was 626 mg g-1. The adsorption capacity of both Ti3C2T x structures decreased with the increase of pH, and reached the maximum value at pH = 2; meanwhile, the adsorption capacity of both Ti3C2T x structures increased with the increase of Cr(vi) concentration. The adsorption of Cr(vi) on flaky Ti3C2T x was very fast, reaching equilibrium in 3 min, while spherical Ti3C2T x took 5 min. The adsorption of Cr(vi) on both Ti3C2T x structures belonged to the monolayers, heat-absorbing chemical adsorption, and the diffusion process of Cr(vi) was regulated by the external diffusion and internal diffusion of particles. Its adsorption mechanism was the combination of reductive adsorption and electrostatic adsorption.
Collapse
Affiliation(s)
- Linjie Yi
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University Chongqing 400044 P. R. China
| | - Hongwei Wang
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University Chongqing 400044 P. R. China
| | - Xianliang Ren
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University Chongqing 400044 P. R. China
| | - GaoBin Liu
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University Chongqing 400044 P. R. China
| | - Hongen Nian
- Qinghai Institute of Salt Lakes, Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Chinese Academy of Sciences Xining Qinghai Province 810008 P. R. China
| | - Zhiqin Zheng
- Sichuan Province Engineering Technology Research Center of Liquor-Making Grains, School of Biological Engineering and Wuliangye Liquor, Sichuan University of Science and Engineering Yibin Sichuan Province 644000 China
- National Innovation Center for Nuclear Enviromental Safety, Southwest University of Science and Technology Mianyang Sichuan Province 621010 P. R. China
- NHC Key Laboratory of Nuclear Technology Medical Transformation (MianYang Central Hospital) Mianyang Sichuan Province 621010 P. R. China
| | - Fang Wu
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University Chongqing 400044 P. R. China
- Center of Modern Physics, Institute for Smart City of Chongqing University in Liyang Liyang Jiangsu Province 213300 P. R. China
| |
Collapse
|
2
|
Zhang X, Wang Y, Li T, Wang H. Tannic acid modified microscale zero valent iron (TA-mZVI) with enhanced anti-passivation capability for Cr(VI) removal. CHEMOSPHERE 2024; 350:141034. [PMID: 38147926 DOI: 10.1016/j.chemosphere.2023.141034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/27/2023] [Accepted: 12/23/2023] [Indexed: 12/28/2023]
Abstract
The removal of Cr(VI) from aqueous solutions using microscale zerovalent iron (mZVI) shows promising potential. However, the surface passivation of mZVI particles hinders its widespread application. In this study, we prepared tannic acid (TA) modified mZVI composite (TA-mZVI) by a simple sonication method. The introduction of TA allowing TA-mZVI composite to adsorb Cr(VI) rapidly under electrostatic forces attraction, guarantying TA-mZVI exhibited remarkable Cr(VI) removal capacity with a maximum adsorption capacity of 106.1 mg⋅g-1. At an initial pH of 3, it achieved a rapid removal efficiency of 96.2% within just 5 min, which was 7.7 times higher than that of mZVI. Various characterizations, including XPS and CV analysis, indicated that the formation of TA-Fe complexes accelerates electron transfer. In addition, TA endows functional groups to TA-mZVI, raising the dispersion and stability and serves as a protective layer hindering passivation. Further mechanistic analysis revealed that Cr(VI) removal by TA-mZVI followed an adsorption-reduction-precipitation mechanism, with TA mitigating the surface passivation of mZVI and facilitating the reduction of most Cr(VI) to Cr(III). Batch cyclic experiments revealed that TA-mZVI exhibited satisfactory performance, maintaining over 85% Cr(VI) removal even after five cycles and minimally affected by various coexisting ions. With notable advantages in cost-effectiveness, ease-synthesis and recovery, this work provides a great promise for developing efficient reactive adsorbent for addressing Cr(VI) contamination in aqueous solutions.
Collapse
Affiliation(s)
- Xueyi Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yue Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tielong Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Haitao Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
3
|
Jiang J, Shi Y, Ma NL, Ye H, Verma M, Ng HS, Ge S. Utilizing adsorption of wood and its derivatives as an emerging strategy for the treatment of heavy metal-contaminated wastewater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122830. [PMID: 37918773 DOI: 10.1016/j.envpol.2023.122830] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/16/2023] [Accepted: 10/28/2023] [Indexed: 11/04/2023]
Abstract
The rapid development of the industrial sector has resulted in tremendous economic growth. However, this growth has also presented environmental challenges, specifically due to the substantial sewage generated and its contribution to the early warning of global water resource depletion. Large concentrations of poisonous heavy metals, including cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), and nickel (Ni), are found in industrial effluent. Therefore, various studies are currently underway to provide effective solutions to alleviate heavy metal ion pollution in sewage. One emerging strategy for sewage pollution remediation is adsorption using wood and its derivatives. This approach is gaining popularity due to the porous structure, excellent mechanical properties, and easy chemical modification of wood. Recent studies have focused on removing heavy metal ions from sewage, summarising and analysing different technical principles, affecting factors, and mainstream chemical modification methods on wood. Furthermore, this work provides insight into potential future development direction for enhanced adsorption of heavy metal ions using wood and its derivatives in wastewater treatment. Overall, this review aims to raise awareness of environmental pollution caused by heavy metals in sewage and promote green environmental protection, low-carbon energy-saving, and sustainable solutions for sewage heavy metal treatment.
Collapse
Affiliation(s)
- Jinxuan Jiang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yang Shi
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Nyuk Ling Ma
- BIOSES Research Interest Group, Faculty of Science & Marine Environment, 21030, Universiti Malaysia Terengganu, Malaysia; Center for Global Health Research (CGHR), Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 602105, India
| | - Haoran Ye
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Meenakshi Verma
- University Centre for Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Hui Suan Ng
- Centre for Research and Graduate Studies, University of Cyberjaya, Persiaran Bestari, 63000, Cyberjaya, Selangor, Malaysia
| | - Shengbo Ge
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
4
|
Li Z, Yang C, Qu G, Cui Q, Yang Y, Ren Y, Yang Y, Wang F. Chitosan-modified magnetic carbon nanomaterials with high efficiency, controlled motility, and reusability-for removal of chromium ions from real wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51271-51287. [PMID: 36809614 DOI: 10.1007/s11356-023-25302-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/09/2023] [Indexed: 04/16/2023]
Abstract
Hexavalent chromium Cr(VI) is one of the most hazardous oxygen-containing anions to human health and the environment. Adsorption is considered to be an effective method for the removal of Cr(VI) from aqueous solutions. Based on an environmental perspective, we used renewable biomass cellulose as carbon source and chitosan as functional material to synthesize chitosan-coated magnetic carbon (MC@CS) material. The synthesized chitosan magnetic carbons were uniform in diameter (~ 20 nm) and contain a large number of abundant hydroxyl and amino functional groups on the surface, meanwhile owning excellent magnetic separation properties. The MC@CS exhibited high adsorption capacity (83.40 mg/g) at pH 3 and excellent cycling regeneration ability when applied to Cr(VI) removal in water, removal rate of Cr(VI) (10 mg/L) was still over 70% after 10 cycles. FT-IR and XPS spectra showed that electrostatic interaction and reduction with Cr(VI) are the main mechanisms of Cr(VI) removal by MC@CS nanomaterial. This work provides an environment-friendly adsorption material that could be reused for the removal of Cr(VI) in multiple cycles.
Collapse
Affiliation(s)
- Zhishuncheng Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 727 Jingmingnan Road, Kunming, 650500, Yunnan, China
- National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China
| | - Can Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 727 Jingmingnan Road, Kunming, 650500, Yunnan, China
- National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China
| | - Guangfei Qu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 727 Jingmingnan Road, Kunming, 650500, Yunnan, China.
- National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China.
| | - Qingyuan Cui
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 727 Jingmingnan Road, Kunming, 650500, Yunnan, China
- National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China
| | - Yixin Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 727 Jingmingnan Road, Kunming, 650500, Yunnan, China
- National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China
| | - Yuanchuan Ren
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 727 Jingmingnan Road, Kunming, 650500, Yunnan, China
- National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China
| | - Yuyi Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 727 Jingmingnan Road, Kunming, 650500, Yunnan, China
- National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China
| | - Fang Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, 727 Jingmingnan Road, Kunming, 650500, Yunnan, China
- National Regional Engineering Research Center-NCW, Kunming, 650500, Yunnan, China
| |
Collapse
|
5
|
Kohama N, Okazaki T, Sazawa K, Hata N, Kuramitz H, Taguchi S. Simple solid-phase colorimetry for trace Cr(VI) by combination of complexation with diphenylcarbazide and ion-pair solid-phase extraction with sedimentable dispersed particulates. ANAL SCI 2023; 39:857-865. [PMID: 36795319 DOI: 10.1007/s44211-023-00286-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/01/2023] [Indexed: 02/17/2023]
Abstract
A highly sensitive and simple solid-phase colorimetry for Cr(VI) was proposed. It was based on the ion-pair solid-phase extraction of Cr-diphenylcarbazide (DPC) complex with sedimentable dispersed particulates. The concentration of Cr(VI) was measured from the color tones obtained by image analysis of the photo of sediment. Various conditions, e.g., material and amounts of adsorbent particulates, chemical properties and concentration of counter ions, and pH, were optimized for the formation and quantitative extraction of the complex. In the recommended procedure, 1 mL of sample was put into a 1.5 mL microtube where powder form adsorbent and reagents, i.e., XAD-7HP particles, DPC, sodium dodecyl sulfate, amido sulfuric acid, and sodium chloride had been packed. The analytical operation was completed within 5 min by gently shaking the microtube and allowing it to stand until enough amounts of particulates were deposited to take a picture. Chromium (VI) up to 2.0 ppm was determined, and the detection limit was 0.0034 ppm. The sensitivity was enough to determine Cr(VI) at lower concentrations than the water quality of standard (0.02 ppm). This method was successfully applied to the analysis of simulated industrial wastewater samples. The stoichiometry of the extracted chemical species was also investigated by applying the same equilibrium model as the ion-pair solvent extraction.
Collapse
Affiliation(s)
- Nozomi Kohama
- Department of Environmental Biology and Chemistry, Graduate School of Science and Engineering for Research, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| | - Takuya Okazaki
- Department of Applied Chemistry, School of Science and Technology, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan
| | - Kazuto Sazawa
- Department of Environmental Biology and Chemistry, Graduate School of Science and Engineering for Research, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| | - Noriko Hata
- Department of Environmental Biology and Chemistry, Graduate School of Science and Engineering for Research, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| | - Hideki Kuramitz
- Department of Environmental Biology and Chemistry, Graduate School of Science and Engineering for Research, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan.
| | - Shigeru Taguchi
- Department of Environmental Biology and Chemistry, Graduate School of Science and Engineering for Research, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan
| |
Collapse
|
6
|
Xie Q, Zou Y, Wang Y, Wang H, Du Z, Cheng X. Mechanically robust sodium alginate/cellulose nanofibers/polyethyleneimine composite aerogel for effective removal of hexavalent chromium and anionic dyes. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Qian Xie
- College of Biomass Science and Engineering Sichuan University Chengdu PR China
| | - Yuke Zou
- College of Biomass Science and Engineering Sichuan University Chengdu PR China
| | - Yazhou Wang
- Sinopec, Shengli Oilfield Chunliang Oil Prod Plant Dongying Shangdong China
| | - Haibo Wang
- College of Biomass Science and Engineering Sichuan University Chengdu PR China
- The Key Laboratory of Leather Chemistry and Engineering Sichuan University, Ministry of Education Chengdu PR China
| | - Zongliang Du
- College of Biomass Science and Engineering Sichuan University Chengdu PR China
- The Key Laboratory of Leather Chemistry and Engineering Sichuan University, Ministry of Education Chengdu PR China
| | - Xu Cheng
- College of Biomass Science and Engineering Sichuan University Chengdu PR China
- The Key Laboratory of Leather Chemistry and Engineering Sichuan University, Ministry of Education Chengdu PR China
| |
Collapse
|
7
|
Sun W, Liu T, Xia K, Zhou J, Liu X, Zhang X. Preparation of Adsorbent Based on Polyacrylate Latex Solid Waste and Its Application in the Treatment of Dye Wastewater. ACS OMEGA 2022; 7:13243-13253. [PMID: 35474780 PMCID: PMC9026086 DOI: 10.1021/acsomega.2c00690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
It is a great challenge to sustainably produce and apply water-based coatings and inks in terms of realizing the green resource utilization of polyacrylate latex solid waste (PLSW) and avoid its secondary pollution. In this paper, a kind of high value-added amphoteric ion-exchange resin (AIER) was prepared by using diethylenetriamine to amidate PLSW under the optimized conditions from a Box-Behnken design. Its adsorption and regeneration properties and the universality of the method were investigated. The results suggested that AIER possessed a high removal efficiency to anionic dyes, and the batch dye adsorption processes were endothermic and spontaneous, which is consistent with a pseudo-second-order kinetic model. The penetration adsorption capacities of AIER were recorded to be 987.08 mg/g for RR239 and 1037.75 mg/g for RB5 at the optimized operating conditions of column height = 6.4 cm, flow rate = 1 mL/min, and dye solution of 500 mg/L. They were more than 200 times larger than that of commercial activated carbon when the mixture composed of AIER particle and diatomite particle (filter aid agent) was used as a fixed-bed adsorbent. Zeta potential analysis results indicated that the good adsorption and regeneration performances of AIER were mainly attributed to the presence of amino and carboxyl groups in the molecular structure of AIER. Most importantly, this method possessed excellent practicability and universality for different types of PLSW from factory wastewater. The results provide a feasible method and theoretical basis for the green resource utilization of PLSW, and the goal of "waste control by waste" was fundamentally achieved.
Collapse
|
8
|
Detailed investigation of effective trace Cr(VI) removal mechanism by anion exchange resin with phenol-formaldehyde matrix. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.03.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Li P, Damron JT, Veith GM, Bryantsev VS, Mahurin SM, Popovs I, Jansone-Popova S. Bifunctional Ionic Covalent Organic Networks for Enhanced Simultaneous Removal of Chromium(VI) and Arsenic(V) Oxoanions via Synergetic Ion Exchange and Redox Process. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104703. [PMID: 34677905 DOI: 10.1002/smll.202104703] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Chromium (VI) and arsenic (V) oxoanions are major toxic heavy metal pollutants in water threatening both human health and environmental safety. Herein, the development is reported of a bifunctional ionic covalent organic network (iCON) with integrated guanidinium and phenol units to simultaneously sequester chromate and arsenate in water via a synergistic ion-exchange-redox process. The guanidinium groups facilitate the ion-exchange-based adsorption of chromate and arsenate at neutral pH with fast kinetics and high uptake capacity, whereas the integrated phenol motifs mediate the Cr(VI)/Cr(III) redox process that immobilizes chromate and promotes the adsorption of arsenate via the formation of Cr(III)-As(V) cluster/complex. The synergistic ion-exchange-redox approach not only pushes high adsorption efficiency for both chromate and arsenate but also upholds a balanced Cr/As uptake ratio regardless of the change in concentration and the presence of interfering oxoanions.
Collapse
Affiliation(s)
- Ping Li
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Joshua T Damron
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Gabriel M Veith
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | | | - Shannon M Mahurin
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Ilja Popovs
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Santa Jansone-Popova
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|