1
|
Oh H, Kim JY, Chae KH, Kim J, Yun ET, Lee Y, Lee C, Moon GH, Lee J. Oxyanion-Sensitive Catalytic Activity of Ni(II)/Oxyanion Systems for Heterogeneous Organic Degradation: Differential Oxidizing Capacity of Ni(III) and Ni(IV) as High-Valent Intermediates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16642-16655. [PMID: 39226236 DOI: 10.1021/acs.est.4c07457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
This study demonstrated that NiO and Ni(OH)2 as Ni(II) catalysts exhibited significant activity for organic oxidation in the presence of various oxyanions, such as hypochlorous acid (HOCl), peroxymonosulfate (PMS), and peroxydisulfate (PDS), which markedly contrasted with Co-based counterparts exclusively activating PMS to yield sulfate radicals. The oxidizing capacity of the Ni catalyst/oxyanion varied depending on the oxyanion type. Ni catalyst/PMS (or HOCl) degraded a broad spectrum of organics, whereas PDS enabled selective phenol oxidation. This stemmed from the differential reactivity of two high-valent Ni intermediates, Ni(III) and Ni(IV). A high similarity with Ni(III)OOH in a substrate-specific reactivity indicated the role of Ni(III) as the primary oxidant of Ni-activated PDS. With the minor progress of redox reactions with radical probes and multiple spectroscopic evidence on moderate Ni(III) accumulation, the significant elimination of non-phenolic contaminants by NiOOH/PMS (or HOCl) suggested the involvement of Ni(IV) in the substrate-insensitive treatment capability of Ni catalyst/PMS (or HOCl). Since the electron-transfer oxidation of organics by high-valent Ni species involved Ni(II) regeneration, the loss of the treatment efficiency of Ni/oxyanion was marginal over multiple catalytic cycles.
Collapse
Affiliation(s)
- Hoon Oh
- Civil, Environmental, and Architectural Engineering, Korea University, Seoul 02841, Korea
| | - Ji-Young Kim
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Keun Hwa Chae
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Jaesung Kim
- Civil, Environmental, and Architectural Engineering, Korea University, Seoul 02841, Korea
| | - Eun-Tae Yun
- Civil, Environmental, and Architectural Engineering, Korea University, Seoul 02841, Korea
| | - Yunho Lee
- Earth Science and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Changha Lee
- Chemical and Biological Engineering, Seoul National University, Seoul 08826, Korea
| | - Gun-Hee Moon
- Extreme Materials Research Center & Climate and Environmental Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
- Nanoscience and Technology, KIST School, University of Science and Technology, Seoul 02792, Korea
| | - Jaesang Lee
- Civil, Environmental, and Architectural Engineering, Korea University, Seoul 02841, Korea
| |
Collapse
|
2
|
Pan X, Pu J, Zhang L, Gong X, Luo X, Fan L. Bimetallic iron-nickel phosphide as efficient peroxymonosulfate activator for tetracycline hydrochloride degradation: Performance and mechanism. ENVIRONMENTAL RESEARCH 2024; 249:118362. [PMID: 38325787 DOI: 10.1016/j.envres.2024.118362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/23/2023] [Accepted: 12/03/2023] [Indexed: 02/09/2024]
Abstract
Sulfate radical-based advanced oxidation processes with (SR-AOPs) are widely employed to degrade organic pollutants due to their high efficiency, cost-effectiveness and safety. In this study, a highly active and stable FeNiP was successfully prepared by reduction and heat treatment. FeNiP exhibited high performance of peroxymonosulfate (PMS) activation for tetracycline hydrochloride (TC) removal. Over a wide pH range, an impressive TC degaradation efficiency 97.86% was achieved within 60 min employing 0.1 g/L FeNiP and 0.2 g/L PMS at room temperature. Both free radicals of SO4·-, ·OH, ·O2- and non-free radicals of 1O2 participated the TC degradation in the FeNiP/PMS system. The PMS activation ability was greatly enhanced by the cycling between Ni and Fe bimetal, and the active site regeneration was achieved due to the existence of the negatively charged Pn-. Moreover, the FeNiP/PMS system exhibited substantial TC degradation levels in both simulated real-world disturbance scenarios and practical water tests. Cycling experiments further affirmed the robust stability of FeNiP catalyst, demonstrating sustained degradation efficiency of approximately 80% even after four cycles. These findings illuminate its promising potential across natural water bodies, presenting an innovative catalyst construction approach for PMS activation in the degradation of antibiotic pollutants.
Collapse
Affiliation(s)
- Xiaofang Pan
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610068, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Jiaxing Pu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610068, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Lingrui Zhang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610068, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Xiaobo Gong
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610068, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China; Sichuan Environmental Protection Key Laboratory of Persistent Pollutant Wastewater Treatment, Chengdu, Sichuan, 610068, China.
| | - Xuan Luo
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610068, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China
| | - Lu Fan
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest, Ministry of Education, Sichuan Normal University, Chengdu, 610068, China; College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan, 610068, China; Sichuan Environmental Protection Key Laboratory of Persistent Pollutant Wastewater Treatment, Chengdu, Sichuan, 610068, China.
| |
Collapse
|
3
|
Rivas FJ. Monopersulfate in water treatment: Kinetics. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128383. [PMID: 35176700 DOI: 10.1016/j.jhazmat.2022.128383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/22/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The kinetics of monopersulfate based systems in the elimination of potential harmful contaminants has been assessed from a theoretical point of view. A detailed reaction mechanism sustained in the generation of radicals (mainly hydroxyl and sulfate), propagation and termination stages has been proposed. The system of first order differential equations derived has numerically been solved. The effect of main influencing parameters such as contaminant and peroxymonosulfate initial concentrations, intermediate generation, presence of organic matter, role played by anions, has been theoretically obtained. Discussion of simulated results has been accomplished by comparison with experimental data found in the literature. At the sight of the theoretical and empirical data, use of simplistic pseudo first order kinetics is discouraged. Despite considering a significant number of elemental reactions, modelling of the system reveals that a high fraction of them can be neglected due to their insignificant role played in the mechanism. The entire mechanism has been tested when peroxymonosulfate has been activated by UV radiation, although results can be fairly extrapolated to other activation strategies. Finally, a generic model capable of accounting for the effect of a diversity of parameters is proposed. No theoretical background is behind the model, however the generic model clearly improves the results obtained by simple first order kinetics.
Collapse
Affiliation(s)
- F Javier Rivas
- Departamento de Ingeniería química y química física, IACYS,Universidad de Extremadura, Av. Elvas s/n, 06006 Badajoz, Spain
| |
Collapse
|
4
|
Molybdenum phosphide (MoP) with dual active sites for the degradation of diclofenac in Fenton-like system. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.07.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Tian Y, Wang Y, Zhang H, Xiao L, Wu W. Novel C@Ni3P Nanoparticles for Highly Selective Hydrogenation of Furfural to Furfuryl Alcohol. Catal Letters 2021. [DOI: 10.1007/s10562-021-03680-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Hernández-Pagán EA, Lord RW, Veglak JM, Schaak RE. Incorporation of Metal Phosphide Domains into Colloidal Hybrid Nanoparticles. Inorg Chem 2021; 60:4278-4290. [PMID: 33661620 DOI: 10.1021/acs.inorgchem.0c03826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Colloidal hybrid nanoparticles have generated considerable attention in the inorganic nanomaterials community. The combination of different materials within a single nanoparticle can lead to synergistic properties that can enable new properties, new applications, and the discovery of new phenomena. As such, methodologies for the synthesis of hybrid nanoparticles that integrate metal-metal, metal chalcogenide, metal oxide, and oxide-chalcogenide domains have been extensively reported in the literature. However, colloidal hybrid nanoparticles containing metal phosphide domains are rare, despite being attractive systems for their potentially unique catalytic, photocatalytic, and optoelectronic properties. In this Forum Article, we report a study of the synthesis of colloidal hybrid nanoparticles that couple the metal phosphides Ni2P and CoxPy with Au, Ag, PbS, and CdS using heterogeneous seeded-growth reactions. We also investigate the transformation of Au-Ni heterodimers to Au-Ni2P, where phosphidation of preformed metal-metal hybrid nanoparticles offers an alternative route to metal phosphide systems. We also study sequential cation-exchange reactions to target specific metal phosphide hybrids, i.e., the transformation of Ni2P-PbS into Ni2P-Ag2S and then Ni2P-CdS. Throughout all of these pathways, the accompanying discussion emphasizes the synthetic rationale, as well as the challenges in synthesis and characterization that are unique to these systems. In particular, the observation of oxide shells that surround the phosphide domains has implications for the potential photocatalytic applications of these hybrid nanoparticles.
Collapse
Affiliation(s)
- Emil A Hernández-Pagán
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.,Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Robert W Lord
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Joseph M Veglak
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Raymond E Schaak
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.,Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.,Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|