1
|
He M, Feng L, Cui Q, Li Y, Wang J, Zhu J, Wang L, Wang X, Miao R. Forward osmosis membrane doped with water-based zirconium fumarate MOFs to enhance dye pollutant removal and membrane antifouling performance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:61018-61031. [PMID: 37046161 DOI: 10.1007/s11356-023-26670-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/23/2023] [Indexed: 05/10/2023]
Abstract
Metal-organic frameworks (MOFs) can be applied to enhance the property of forward osmosis membranes. However, organic solvents can easily remain in organic synthetic metal-organic frame materials and cause membrane fouling and a decrease in membrane permeability. In this study, water-based Zr-fumarate MOFs were synthesized and doped into the membrane active layer by interfacial polymerization to provide a water-based MOF-doped thin-film composite membrane (TFC membrane). It was found that doping the water-based MOFs effectively improved membrane hydrophilicity, and nanowater passages were introduced in the active layer to improve permeability. The water flux of the water-based MOF-doped TFC membranes was increased by 21% over that of the original membrane, and the selectivity performance of the membrane was improved while keeping the salt rejection basically unchanged. Additionally, the water-based MOF-doped TFC membrane showed good removal efficiency (Rd > 94%) and strong antipollution performance in the treatment of dye pollutants.
Collapse
Affiliation(s)
- Miaolu He
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resources, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
- Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
| | - Leihao Feng
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
| | - Qi Cui
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
| | - Yushuang Li
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
| | - Jiaqi Wang
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
| | - Jiani Zhu
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
| | - Lei Wang
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China.
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China.
- Key Laboratory of Northwest Water Resources, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China.
- Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China.
| | - Xudong Wang
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resources, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
- Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
| | - Rui Miao
- School of Environmental & Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
- Key Laboratory of Membrane Separation of Shaanxi Province, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
- Key Laboratory of Northwest Water Resources, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
- Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No. 13, Xi'an, 710055, China
| |
Collapse
|
3
|
Li F, Liu TD, Xie S, Guan J, Zhang S. 2D Metal-Organic Framework-Based Thin-Film Nanocomposite Membranes for Reverse Osmosis and Organic Solvent Nanofiltration. CHEMSUSCHEM 2021; 14:2452-2460. [PMID: 33899343 DOI: 10.1002/cssc.202100335] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Metal-organic frameworks (MOFs) are promising candidates for membrane-based liquid separations due to their intrinsic microporosity, but many are limited by their insufficient stability. In this work, a copper-benzoquinoid (Cu-THQ) MOF was synthesized and demonstrated structural stability in water and organic solvents. After incorporation into the polyamide layer, the hydrophilicity of the membranes was enhanced. The resultant thin-film nanocomposite (TFN) membranes broke the permeability-selectivity tradeoff by showing 242 % increase in water permeance and slightly enhanced salt rejection at MOF loading of 0.0192 mg cm-2 . The underlying mechanism was probed by different chemical and morphological characterizations. The membranes also showed improved tolerance to chlorine oxidation. With their excellent stability, the Cu-THQ MOF-based membranes further demonstrated impressive performance in organic solvent nanofiltration involving dimethylformamide.
Collapse
Affiliation(s)
- Feng Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Theo Dongyu Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Silijia Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Jian Guan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Sui Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|