Li H, Hu Y, Li L, Xie Y, Schaefer HF. Synthesis of Methanesulfonic Acid Directly from Methane: The Cation Mechanism or the Radical Mechanism?
J Phys Chem Lett 2021;
12:6486-6491. [PMID:
34240874 DOI:
10.1021/acs.jpclett.1c01619]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In 2019, Diaz-Urrutia and Ott developed a high-yield method for direct conversion of methane to methanesulfonic acid and proposed a cationic chain reaction mechanism. However, Roytman and Singleton questioned this mechanism, and they favored a free-radical mechanism. In the present paper, we studied both the cationic chain and radical mechanisms and found the radical mechanism is more favorable, since it has a much lower energy barrier. However, the radical mechanism has not considered the effect of ions for the reaction taking place in oleum. Thus, we studied a simple model of a protonated radical mechanism, which further lowers the energy barrier. Although the true mechanism for the CH4 + SO3 reaction could be more complicated in electrolyte solutions, this model should be helpful for the further study of the mechanism of this reaction.
Collapse