1
|
Zhang Y, Yu X, Wang Y, Wang Z, Hou Q, Fan X. Stretchable, Self-Healable, and Durable Conductive Elastomer Derived from a Rationally Designed Covalently Cross-Linked Network. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4165-4175. [PMID: 39764734 DOI: 10.1021/acsami.4c17701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Silver nanowire (Ag NW)-based elastic conductors have been considered a promising candidate for key stretchable electrodes in wearable devices. However, the weak interface interaction of Ag NWs and elastic substrates leads to poor durability of electronic devices. For everyday usage, an additional self-healing ability is required to resist scratching and damage. Therefore, robust Ag NW-based elastic conductors possessing stretchability, self-healing, and stability are highly desirable and challenging. Here, we present a universal interface tailoring strategy that introduces thiols onto the dynamically cross-linked elastic substrate surface. The surface thiol groups strongly interact with Ag NWs through Ag-S bonds, forming the stable conductive layer on the elastic substrate. At elevated temperatures, the Ag NWs are partially embedded in the surface of the elastic substrate and a buffer layer is formed to release the concentrated stress. As a result, the formed Ag NW-based elastic conductor displays the combination of good conductivity, high stretchability (>1000%), efficient self-healing capability (>95%), and remarkable stability. Besides, the Ag NW-based elastic conductor combining the good properties mentioned above is suitable for fabricating a sensitive and durable strain sensor against cyclic strain. The presented strategy can be considered a versatile and effective route to generating other surface thiol-rich covalently cross-linked elastomers with dynamic disulfide bonds.
Collapse
Affiliation(s)
- Yingxin Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Xiaohui Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Yufei Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Zhihong Wang
- Haiyan Hospital of Traditional Chinese Medicine, 279 Chaoyang East Road, Wuyuan Street, Haiyan County, Zhejiang 314399, P. R. China
| | - Qiaozhi Hou
- School of Medicine, Huanghe Science and Technology University, Zhengzhou 450061, P. R. China
| | - Xiaoshan Fan
- School of Medicine, Huanghe Science and Technology University, Zhengzhou 450061, P. R. China
| |
Collapse
|
2
|
Ni Y, Chen J, Chen K. Flexible vanillin-polyacrylate/chitosan/mesoporous nanosilica-MXene composite film with self-healing ability towards dual-mode sensors. Carbohydr Polym 2024; 335:122042. [PMID: 38616072 DOI: 10.1016/j.carbpol.2024.122042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 04/16/2024]
Abstract
Manufacturing flexible sensors with prominent mechanical properties, multifunctional sensing abilities, and remarkable self-healing capabilities remains a difficult task. In this study, a novel vanillin-modified polyacrylate (VPA), which is capable of forming green dynamic covalent crosslinking with chitosan (CS), was synthesized. The synthesized VPA was combined with mesoporous silica-modified MXene (AMS-MXene) and covalently cross-linked simultaneously with CS, resulting in the formation of a flexible composite conductive film designed for dual-mode sensors. Due to the multidimensional structure formed by the mesoporous silica and MXene layers, the resulting composite film is not only suitable for strain sensing but also excels in gas response sensing. Most importantly, the composite films demonstrate a remarkable self-healing capability through reversible dynamic covalent bonds, specifically Schiff base bonds, coupled with multiple hydrogen bonding interactions with AMS-MXene. This robust self-repair functionality remains effective even at a low temperature of 30 °C. Additionally, the synergistic antibacterial effect exerted by vanillin and CS in the film can endow the composite sensor with excellent antimicrobial properties. This multifunctional composite film holds tremendous potential for applications in green flexible wearable sensors. Furthermore, it can show diverse applications in a wide variety of fields, driving advances in wearable technology and human health monitoring.
Collapse
Affiliation(s)
- Yezhou Ni
- Key Laboratory of Eco-Textile, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Jingyu Chen
- Key Laboratory of Eco-Textile, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Kunlin Chen
- Key Laboratory of Eco-Textile, Ministry of Education, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Ou Y, Xing Y, Yang Z, Huang J, He J, Jiang F, Zhang Y. Strong and ultrafast stimulus-healable lignin-based composite elastomers with excellent adhesion properties. Int J Biol Macromol 2024; 256:128507. [PMID: 38040144 DOI: 10.1016/j.ijbiomac.2023.128507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
With the increased environmental issues, advanced high-performance and multifunctional polymeric materials derived from biomass have tremendous attention due to the great potential to replace their traditional petroleum-based counterparts. In this work, a series of lignin graft copolymers, lignin-graft-poly(n-butyl acrylate-co-acrylic acid) (Lig-g-P(BA-co-AA)), were rationally prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization. These lignin-based copolymers demonstrate good thermal stability and tunable glass transition temperature (Tg) values. The mechanical performance, including tensile strength, extensibility, Young's modulus, and toughness can be facilely adjusted by the BA/AA feed ratio and lignin content during polymerization. Owing to the extraordinary photothermal conversion ability of lignin, the Lig-B550 copolymer, containing 11.8 wt% lignin content, shows excellent stimulus-healing behavior within 1 min with a 97.1 % healing efficiency under near-infrared (NIR) laser irradiation. Moreover, the Lig-g-P(BA-co-AA) copolymers exhibit remarkable adhesion property, broadening their potential applications in the adhesive area. This grafting strategy is versatile and efficient, conferring the resultant lignin-based composite elastomers with dramatically enhanced mechanical properties and unprecedented photothermal behavior, which can inspire the further development of strong lignin-based sustainable elastomers.
Collapse
Affiliation(s)
- Yangtao Ou
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yuxian Xing
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zhiyuan Yang
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jiajing Huang
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Juan He
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Feng Jiang
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Yaqiong Zhang
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China.
| |
Collapse
|
4
|
Yang X, Guo Y, Kong L, Lu J, Lin B, Xu C. Biobased epoxidized natural rubber/sodium carboxymethyl cellulose composites with enhanced strength and healing ability. Int J Biol Macromol 2023; 242:124681. [PMID: 37141968 DOI: 10.1016/j.ijbiomac.2023.124681] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
Conventional vulcanized rubbers cause a non-negligible waste of resources due to the formation of 3D irreversible covalently cross-linked networks. The introduction of reversible covalent bonds, such as reversible disulfide bonds, into the rubber network, is an available solution to the above problem. However, the mechanical properties of rubber with only reversible disulfide bonds cannot meet most practical applications. In this paper, a strengthened bio-based epoxidized natural rubber (ENR) composite reinforced by sodium carboxymethyl cellulose (SCMC) was prepared. SCMC forms a mass of hydrogen bonds between its hydroxyl groups and the hydrophilic groups of ENR chain, which gives the ENR/2,2'-Dithiodibenzoic acid (DTSA)/SCMC composites an enhanced mechanical performance. With 20 phr SCMC, the tensile strength of the composite increases from 3.0 to 10.4 MPa, which is almost 3.5 times that of the ENR/DTSA composite without SCMC. Simultaneously, DTSA covalently cross-linked ENR with the introduction of reversible disulfide bonds, which enables the cross-linked network to rearrange its topology at low temperatures and thus endows the ENR/DTSA/SCMC composites with healing properties. The ENR/DTSA/SCMC-10 composite has a considerable healing efficiency of about 96 % after healing at 80 °C for 12 h.
Collapse
Affiliation(s)
- Xueli Yang
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Yuanming Guo
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Lingli Kong
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Junjie Lu
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Baofeng Lin
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China
| | - Chuanhui Xu
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, School of Chemistry and Chemical Engineering, Guangxi University, No. 100, Daxuedong Road, Xixiangtang District, Nanning 530004, China.
| |
Collapse
|
5
|
Jaras J, Navaruckiene A, Ostrauskaite J. Thermoresponsive Shape-Memory Biobased Photopolymers of Tetrahydrofurfuryl Acrylate and Tridecyl Methacrylate. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2156. [PMID: 36984035 PMCID: PMC10056724 DOI: 10.3390/ma16062156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
A series of thermoresponsive shape-memory photopolymers have been synthesized from the mixtures of two biobased monomers, tetrahydrofurfuryl acrylate and tridecyl methacrylate, with the addition of a small amount of 1,3-benzendithiol (molar ratio of monomers 0-10:0.5:0.03, respectively). Ethyl (2,4,6 trimethylbenzoyl) phenylphosphinate was used as photoinitiator. The calculated biorenewable carbon content of these photopolymers was in the range of (63.7-74.9)%. The increase in tetrahydrofurfuryl acrylate content in the photocurable resins resulted in a higher rate of photocuring, increased rigidity, as well as mechanical and thermal characteristics of the obtained polymers. All photopolymer samples showed thermoresponsive shape-memory behavior when reaching their glass transition temperature. The developed biobased photopolymers can replace petroleum-derived thermoresponsive shape-memory polymer analogues in a wide range of applications.
Collapse
|
6
|
Aiswarya S, Awasthi P, Banerjee SS. Self-healing thermoplastic elastomeric materials: Challenges, opportunities and new approaches. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
Booth RE, Khanna C, Schrickx HM, Siddika S, Al Shafe A, O'Connor BT. Electrothermally Actuated Semitransparent Shape Memory Polymer Composite with Application as a Wearable Touch Sensor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53129-53138. [PMID: 36383747 DOI: 10.1021/acsami.2c10290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A semitransparent shape memory polymer (SMP):silver nanowire (AgNW) composite is demonstrated to be capable of low-temperature actuation, thus making it attractive for wearable electronics applications that require intimate contact with the human body. We demonstrate that the SMP:AgNW composite has tunable electrical and optical transparency through variation of the AgNW loading and that the AgNW loading did not significantly change the mechanical behavior of the SMP. The SMP composite is also capable of electrical actuation through Joule heating, where applying a 4 V bias across the AgNWs resulted in full shape recovery. The SMP was found to have high strain sensitivity at both small (<1%) and large (over 10%) applied strain. The SMP could sense strains as low as 0.6% with a gauge factor of 8.2. The SMP composite was then utilized as a touch sensor, able to sense and differentiate tapping and pressing. Finally, the composite was applied as a wearable ring that was thermally actuated to conformably fit onto a finger as a touch sensor. The ring sensor was able to sense finger tapping, pressing, and bending with high signal-to-noise ratios. These results demonstrate that SMP:AgNW composites are a promising design approach for application in wearable electronics.
Collapse
Affiliation(s)
- Ronald E Booth
- Department of Mechanical and Aerospace Engineering and Organic and Carbon Electronic Laboratories (ORaCEL), North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Chetna Khanna
- Department of Mechanical and Aerospace Engineering and Organic and Carbon Electronic Laboratories (ORaCEL), North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Harry M Schrickx
- Department of Mechanical and Aerospace Engineering and Organic and Carbon Electronic Laboratories (ORaCEL), North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Salma Siddika
- Department of Materials Science and Engineering and ORaCEL, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Abdullah Al Shafe
- Department of Materials Science and Engineering and ORaCEL, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Brendan T O'Connor
- Department of Mechanical and Aerospace Engineering and Organic and Carbon Electronic Laboratories (ORaCEL), North Carolina State University, Raleigh, North Carolina 27606, United States
| |
Collapse
|
8
|
Zeng F, Ning J, Yang Y, Tian C, Huang L, Zhao F, Liu Q, Cui M, Lv J, Jiang Y, Cai X, Kong W. A Photohealable Polyurethane with Superior Robustness and Healing Ratio. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fanhao Zeng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jingyi Ning
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yunyun Yang
- Key Laboratory of Civil Aircraft Fire Science and Safety Engineering, Civil Aviation Flight University of China, Guanghan 618307, China
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan 618307, China
| | - Chong Tian
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Lei Huang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Fuqi Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Qiang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Meiling Cui
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jiahao Lv
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yunfeng Jiang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xufu Cai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Weibo Kong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
9
|
Mohd Sani NF, Yee HJ, Othman N, Talib AA, Shuib RK. Intrinsic self-healing rubber: A review and perspective of material and reinforcement. POLYMER TESTING 2022; 111:107598. [DOI: 10.1016/j.polymertesting.2022.107598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
10
|
|
11
|
Basak S, Bandyopadhyay A. Styrene‐butadiene‐styrene
‐based shape memory polymers: Evolution and the current state of art. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sayan Basak
- Department of Polymer Science & Technology University of Calcutta Kolkata West Bengal India
| | - Abhijit Bandyopadhyay
- Department of Polymer Science & Technology University of Calcutta Kolkata West Bengal India
| |
Collapse
|
12
|
Shape memory elastomers: A review of synthesis, design, advanced manufacturing, and emerging applications. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Ru@Carbon Nanotube Composite Microsponge: Fabrication in Supercritical CO2 for Hydrogenation of p-Chloronitrobenzene. NANOMATERIALS 2022; 12:nano12030539. [PMID: 35159884 PMCID: PMC8839890 DOI: 10.3390/nano12030539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 02/05/2023]
Abstract
Novel heterogeneous catalysts are needed to selectively anchor metal nanoparticles (NPs) into the internal space of carbon nanotubes (CNTs). Here, supercritical CO2 (SC-CO2) was used to fabricate the Ru@CNT composite microsponge via impregnation. Under SC-CO2 conditions, the highly dispersive Ru NPs, with a uniform diameter of 3 nm, were anchored exclusively into the internal space of CNTs. The CNTs are assembled into a microsponge composite. The supercritical temperature for catalyst preparation, catalytic hydrogenation temperature, and time all have a significant impact on the catalytic activity of Ru@CNTs. The best catalytic activity was obtained at 100 °C and 8.0 MPa: this gave excellent selectivity in the hydrogenation of p-chloronitrobenzene at 100 °C. This assembly strategy assisted by SC-CO2 will be promising for the fabrication of advanced carbon composite powder materials.
Collapse
|