1
|
Ma L, Wang T. Rational Understanding Hydroxide Diffusion Mechanism in Anion Exchange Membranes during Electrochemical Processes with RDAnalyzer. Angew Chem Int Ed Engl 2024; 63:e202403614. [PMID: 38865214 DOI: 10.1002/anie.202403614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/25/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024]
Abstract
Enhancing the understanding of hydroxide transport mechanisms in anion exchange membranes (AEMs) is beneficial for the rational design of high-performance AEMs in the renewable energy system. However, the high complexity and lack of adequate analytic tools make it challenging to clarify different mechanisms unambiguously. Herein, we developed an in-house toolkit, the Reactive Diffusion Analyzer (RDAnalyzer), to conduct an effective analysis of hydroxide diffusion mechanisms from ReaxFF molecular dynamic simulations. Using the experimentally well-synthesized T20NC6NC5N as a model system, we successfully decoupled the hydroxide diffusion mechanisms into free Vehicular and free Grotthuss, as well as associated Vehicular and associated Grotthuss, which was not yet achieved previously. Meanwhile, RDAnalyzer managed to specifically identify the drift length of hydroxide species for each mechanism under the electric field, which worked as a useful variable for calculating the conductivity of AEMs. Our theoretically predicted conductivity for T20NC6NC5N agrees reasonably with experimental results, indicating the reliability of RDAnalyzer. This work not only provides a rational understanding of the complex hydroxide diffusion mechanisms in AEMs but also holds the potential to guide the rational design of high-performance AEMs with computations.
Collapse
Affiliation(s)
- Lunliang Ma
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
- Department of Chemistry, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Tao Wang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory, Hangzhou, 310000, Zhejiang Province, China
| |
Collapse
|
2
|
Dou H, Xu M, Zhang Z, Luo D, Yu A, Chen Z. Biomass Solid-State Electrolyte with Abundant Ion and Water Channels for Flexible Zinc-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401858. [PMID: 38569594 DOI: 10.1002/adma.202401858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/24/2024] [Indexed: 04/05/2024]
Abstract
Flexible zinc-air batteries are the leading candidates as the next-generation power source for flexible/wearable electronics. However, constructing safe and high-performance solid-state electrolytes (SSEs) with intrinsic hydroxide ion (OH-) conduction remains a fundamental challenge. Herein, by adopting the natural and robust cellulose nanofibers (CNFs) as building blocks, the biomass SSEs with penetrating ion and water channels are constructed by knitting the OH--conductive CNFs and water-retentive CNFs together via an energy-efficient tape casting. Benefiting from the abundant ion and water channels with interconnected hydrated OH- wires for fast OH- conduction under a nanoconfined environment, the biomass SSEs reveal the high water-uptake, impressive OH- conductivity of 175 mS cm-1 and mechanical robustness simultaneously, which overcomes the commonly existed dilemma between ion conductivity and mechanical property. Remarkably, the flexible zinc-air batteries assemble with biomass SSEs deliver an exceptional cycle lifespan of 310 h and power density of 126 mW cm-2. The design methodology for water and ion channels opens a new avenue to design high-performance SSEs for batteries.
Collapse
Affiliation(s)
- Haozhen Dou
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Mi Xu
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Zhen Zhang
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Dan Luo
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Aiping Yu
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Zhongwei Chen
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
3
|
Zelovich T, Dekel DR, Tuckerman ME. Electrostatic Potential of Functional Cations as a Predictor of Hydroxide Diffusion Pathways in Nanoconfined Environments of Anion Exchange Membranes. J Phys Chem Lett 2024; 15:408-415. [PMID: 38179916 PMCID: PMC10801687 DOI: 10.1021/acs.jpclett.3c02800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
Nanoconfined anion exchange membranes (AEMs) play a vital role in emerging electrochemical technologies. The ability to control dominant hydroxide diffusion pathways is an important goal in the design of nanoconfined AEMs. Such control can shorten hydroxide transport pathways between electrodes, reduce transport resistance, and enhance device performance. In this work, we propose an electrostatic potential (ESP) approach to explore the effect of the polymer electrolyte cation spacing on hydroxide diffusion pathways from a molecular perspective. By exploring cation ESP energy surfaces and validating outcomes through prior ab initio molecular dynamics simulations of nanoconfined AEMs, we find that we can achieve control over preferred hydroxide diffusion pathways by adjusting the cation spacing. The results presented in this work provide a unique and straightforward approach to predict preferential hydroxide diffusion pathways, enabling efficient design of highly conductive nanoconfined AEM materials for electrochemical technologies.
Collapse
Affiliation(s)
- Tamar Zelovich
- Department
of Chemistry, New York University (NYU), New York, New York 10003, United States
| | - Dario R. Dekel
- Wolfson
Department of Chemical Engineering, Technion
− Israel Institute of Technology, Haifa, 3200003, Israel
- Nancy
& Stephen Grand Technion Energy Program, Technion − Israel Institute of Technology, Haifa, 3200003, Israel
| | - Mark E. Tuckerman
- Department
of Chemistry, New York University (NYU), New York, New York 10003, United States
- Courant
Institute of Mathematical Sciences, New
York University (NYU), New York, New York 10012, United States
- NYU-ECNU
Center for Computational Chemistry at NYU Shanghai, 3663 Zhongshan Rd. North, Shanghai 200062, China
| |
Collapse
|
4
|
Letsau T, Mabuchi T, Msomi PF. Molecular Dynamics Study on the Effect of Cyclic Conducting Moieties on Poly(2,6-dimethyl-1,4-phenylene oxide) Anion Exchange Membranes. ACS OMEGA 2023; 8:48711-48718. [PMID: 38162796 PMCID: PMC10753574 DOI: 10.1021/acsomega.3c05291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/02/2023] [Accepted: 11/24/2023] [Indexed: 01/03/2024]
Abstract
We investigate PPO quaternized with different azoles (five-membered heterocyclic compounds) with a different odd number of Nitrogen atoms (1N-pyrrole, 3N-1,2,3-triazole, and 5N-pentazole) to form pyrrolium-PPO(py-PPO), 1,2,3,-triazolium-PPO(tri-PPO) and pentazolium-PPO(pen-PPO) AEMs, using molecular dynamics (MD) simulations to compare and evaluate their OH- transport via the vehicular mechanism. OH- diffusivity at the hydration level λ = 12 is 3.10 × 10-10 m2/s, 1.92 × 10-10 m2/s m2/s, and 1.91 × 10-10 m2/s for py-PPO, tri-PPO, and pen-PPO, respectively. This trend is due to the shorter distance between adjacent groups of py-PPO (7.5 Å) leading to an efficient hydroxide transport than tri-PPO (7.8 Å) and pen-PPO (8.1 Å) at λ = 12. Also, this trend is justified by the smaller average number of clusters for py-PPO (1.2), smaller than tri-PPO(2.0), and pen-PPO (1.5) at λ = 12, which suggests better connectivity and hence better conductivity.
Collapse
Affiliation(s)
- Thabakgolo
T. Letsau
- Department
of Chemical Science, University of Johannesburg, PO Box 17011, Doornfontein, 2028Johannesburg ,South Africa
- Research
Centre for Synthesis and Catalysis, Department of Chemical Science, University of Johannesburg, PO Box 17011, Doornfontein, 2028Johannesburg ,South Africa
| | - Takuya Mabuchi
- Frontier
Research Institute of Interdisciplinary Sciences, Tohoku University, Sendai ,Miyagi9808577, Japan
- Institute
of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Phumlani F. Msomi
- Department
of Chemical Science, University of Johannesburg, PO Box 17011, Doornfontein, 2028Johannesburg ,South Africa
- Research
Centre for Synthesis and Catalysis, Department of Chemical Science, University of Johannesburg, PO Box 17011, Doornfontein, 2028Johannesburg ,South Africa
| |
Collapse
|
5
|
Li R, Chen X, Zhou X, Shen Y, Fu Y. Understanding of hydroxide transport in poly(arylene indole piperidinium) anion exchange membranes: Effect of side-chain position. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
6
|
Xiang T, Si H. Theoretical study of the degradation mechanisms of substituted imidazolium cations. COMPUT THEOR CHEM 2023. [DOI: 10.1016/j.comptc.2023.114083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
7
|
Karibayev M, Kalybekkyzy S, Wang Y, Mentbayeva A. Molecular Modeling in Anion Exchange Membrane Research: A Brief Review of Recent Applications. Molecules 2022; 27:3574. [PMID: 35684512 PMCID: PMC9182285 DOI: 10.3390/molecules27113574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 12/04/2022] Open
Abstract
Anion Exchange Membrane (AEM) fuel cells have attracted growing interest, due to their encouraging advantages, including high power density and relatively low cost. AEM is a polymer matrix, which conducts hydroxide (OH-) ions, prevents physical contact of electrodes, and has positively charged head groups (mainly quaternary ammonium (QA) groups), covalently bound to the polymer backbone. The chemical instability of the quaternary ammonium (QA)-based head groups, at alkaline pH and elevated temperature, is a significant threshold in AEMFC technology. This review work aims to introduce recent studies on the chemical stability of various QA-based head groups and transportation of OH- ions in AEMFC, via modeling and simulation techniques, at different scales. It starts by introducing the fundamental theories behind AEM-based fuel-cell technology. In the main body of this review, we present selected computational studies that deal with the effects of various parameters on AEMs, via a variety of multi-length and multi-time-scale modeling and simulation methods. Such methods include electronic structure calculations via the quantum Density Functional Theory (DFT), ab initio, classical all-atom Molecular Dynamics (MD) simulations, and coarse-grained MD simulations. The explored processing and structural parameters include temperature, hydration levels, several QA-based head groups, various types of QA-based head groups and backbones, etc. Nowadays, many methods and software packages for molecular and materials modeling are available. Applications of such methods may help to understand the transportation mechanisms of OH- ions, the chemical stability of functional head groups, and many other relevant properties, leading to a performance-based molecular and structure design as well as, ultimately, improved AEM-based fuel cell performances. This contribution aims to introduce those molecular modeling methods and their recent applications to the AEM-based fuel cells research community.
Collapse
Affiliation(s)
- Mirat Karibayev
- Department of Chemical & Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
| | - Sandugash Kalybekkyzy
- Laboratory of Advanced Materials and Systems for Energy Storage, Center for Energy and Advanced Materials Science, National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
| | - Yanwei Wang
- Department of Chemical & Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
- Laboratory of Computational Materials Science for Energy Applications, Center for Energy and Advanced Materials Science, National Laboratory Astana, Nur-Sultan 010000, Kazakhstan
| | - Almagul Mentbayeva
- Department of Chemical & Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
- Laboratory of Advanced Materials and Systems for Energy Storage, Center for Energy and Advanced Materials Science, National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
| |
Collapse
|
8
|
Zhang G, Li R, Wang X, Chen X, Shen Y, Fu Y. The inhibiting water uptake mechanism of main-chain type N-spirocyclic quaternary ammonium ionene blended with polybenzimidazole as anion exchange membrane. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
|