1
|
Lai R, Qu F, Ju M, Xie C, Qian H, Xia T, Wang C, Yu G, Tang Y, Bai X, Hou Q. Review on synthesis of lactic acid and lactates from biomass derived carbohydrates via chemocatalysis routes. BIORESOURCE TECHNOLOGY 2025; 419:132031. [PMID: 39746382 DOI: 10.1016/j.biortech.2024.132031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/25/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
The utilization of renewable lignocellulosic biomass resources is a promising solution to deal with the deficit of fossil resources and the associated environmental concerns. Among diverse biomass-derived products, lactic acid (LA) stands out as one of the most successful commodities and also a platform to connect raw biomass feedstocks with value-added chemicals and degradable polymers. Herein, we critically review the recent advances in the design and development of base, acid, and multifunctional catalytic systems for the conversion of different carbohydrates to LA and alkyl lactates via chemical routes. In addition to critically evaluating the advantages and disadvantages of different catalytic systems, we provide deep insights into the reaction mechanisms, including the reaction pathways of different feedstocks, the catalytic roles of different kinds of active sites, and the structure-activity relationship. We conclude with our perspective on the key challenges and future opportunities.
Collapse
Affiliation(s)
- Ruite Lai
- National & Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Fei Qu
- National & Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Meiting Ju
- National & Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Chao Xie
- National & Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hengli Qian
- National & Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Tianliang Xia
- National & Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chengxu Wang
- National & Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Guanjie Yu
- National & Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yao Tang
- National & Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xinyu Bai
- National & Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qidong Hou
- National & Local Joint Engineering Research Center of Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
2
|
Kongprawes G, Wongsawaeng D, Hosemann P, Ngaosuwan K, Kiatkittipong W, Assabumrungrat S. Non-catalytic glycerol dehydrogenation to dihydroxyacetone using needle-in-tube dielectric barrier discharge plasma. Sci Rep 2024; 14:31295. [PMID: 39732826 DOI: 10.1038/s41598-024-82691-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024] Open
Abstract
Glycerol, a by-product of biodiesel production, could be converted into various value-added products. This work focuses on its dehydrogenation to dihydroxyacetone (DHA), which is mainly used in the cosmetics industry. While several methods have been employed for DHA production, some necessitate catalysts and involve harsh reaction conditions as well as long reaction times. A needle-in-tube type dielectric barrier discharge (DBD) plasma technique for catalyst-free and environmentally-friendly glycerol conversion into DHA via dehydrogenation process was investigated using 0.1 M glycerol dissolved in deionized (DI) water at ambient temperature and pressure. The optimal condition was 60 W input power, 5 mm gap distance between the end of the needle and the liquid surface, and 0.5 L/min He flow rate. The highest DHA yield of 29.3% was obtained at 3 h with a DHA selectivity of 51.6% and glycerol conversion of 56.9%. Although the system allowed over 80% of glycerol to transform after 5 h, the DHA yield decreased after 3 h because the DHA product could further react with the reactive species in the plasma. The catalyst-free DBD plasma technique offers a simple and environmentally conscious method for DHA production via the dehydrogenation of glycerol.
Collapse
Affiliation(s)
- Grittima Kongprawes
- Research Unit on Plasma Technology for High-Performance Materials Development, Department of Nuclear Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Doonyapong Wongsawaeng
- Research Unit on Plasma Technology for High-Performance Materials Development, Department of Nuclear Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Nuclear Engineering, Faculty of Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
| | - Peter Hosemann
- Department of Nuclear Engineering, Faculty of Engineering, University of California at Berkeley, Berkeley, 94720, USA
| | - Kanokwan Ngaosuwan
- Division of Chemical Engineering, Faculty of Engineering, Rajamangala University of Technology Krungthep, Bangkok, 10120, Thailand
| | - Worapon Kiatkittipong
- Department of Chemical Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Suttichai Assabumrungrat
- Center of Excellence in Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
- Bio-Circular-Green-economy Technology & Engineering Center (BCGeTEC), Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
3
|
Wang Y, Zhou Z, Wang C, Zhao L, Xia Q. Hydrogenolysis of glycerol over TiO2-supported Pt-WOx catalysts: Effects of the TiO2 crystal phase and WOx loading. Front Chem 2022; 10:1004925. [PMID: 36212063 PMCID: PMC9532750 DOI: 10.3389/fchem.2022.1004925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/17/2022] [Indexed: 11/15/2022] Open
Abstract
The selective hydrogenolysis of glycerol to 1,3-propanediol (1,3-PDO) with high added value is attraction but challenging. Pt-WOx-based catalysts have been extensively studied in the selective hydrogenolysis of glycerol. The catalyst support and the physicochemical state of WOx play important roles on this reaction. In this paper, Pt-WOx catalysts supported on TiO2 with different crystal forms were prepared and studied for their catalytic performance in hydrogenolysis of glycerol. It was observed that the catalytic performance of anatase-type (A-type) TiO2-supported catalyst (Pt/W/A-Ti) is much better than that of the rutile-type (R-type) TiO2 catalyst (Pt/W/R-Ti) due to its higher stability. Furthermore, the influence of W loading amount and state were thoroughly investigated for the Pt/W/A-Ti catalysts, and Pt/W/A-TiO2 with 5 wt% loading of WOx achieved the best catalytic performance (100% conversion of glycerol and 41% yield of 1,3-PDO under the optimal reaction conditions), owing to the suitable WOx domains and high dispersion of W species, as evidenced by XRD patterns and TEM images. Mechanism study by in-situ DRIFTS experiments indicated that glycerol was first converted to 3-hydroxypropanal and then converted to 1,3-PDO through subsequent reactions.
Collapse
Affiliation(s)
- Yaju Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, China
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, China
| | - Zhiming Zhou
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, China
| | - Chao Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
- Yankuang Technology Co., Ltd., Shandong Energy Group Co., Ltd., Jinan, China
- *Correspondence: Chao Wang, ; Qineng Xia,
| | - Leihong Zhao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, China
| | - Qineng Xia
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, China
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, China
- *Correspondence: Chao Wang, ; Qineng Xia,
| |
Collapse
|