1
|
Hou Y, Liu Y, Chai J. A Cd-based MOF: iodine capture and enhanced efficiency of perovskite solar cells. RSC Adv 2024; 14:27697-27702. [PMID: 39224637 PMCID: PMC11367085 DOI: 10.1039/d4ra05219f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
In this work, a Cd-based metal-organic framework (MOF) {Cd(H2L)2} n (Cd-MOF) (L = 5-(3-carboxypyridin-4-yl)isophthalic acid) has been synthesized solvothermally and characterized. The nitrogen-containing π-electron-rich moieties render Cd-MOF an ideal platform for iodine uptake. Its static adsorption and adsorption kinetics were also investigated. The Cd-MOF efficiently captures iodine and removal efficiency was achieved at 68.6% after 40 h. Furthermore, the Cd-MOF was chosen as the interfacial modification material between the perovskite layer and hole transport layer in the perovskite solar cells (PSCs), Cd-MOF can passivate surface defects and promote hole extraction. Consequently, the Cd-MOF-modified PSCs yield enhanced power conversion efficiencies (PCEs) of 23.71%, outperforming the reference PSCs (21.68%).
Collapse
Affiliation(s)
- Yaxin Hou
- Institute of Fire Safety Materials, School of Materials Science and Engineering, NingboTech University Ningbo 315100 P. R. China
- Minhang Crosspoint Academy at Shanghai Wenqi Middle School Shanghai 200245 P. R. China
| | - Yang Liu
- Institute of Fire Safety Materials, School of Materials Science and Engineering, NingboTech University Ningbo 315100 P. R. China
| | - Juan Chai
- Institute of Fire Safety Materials, School of Materials Science and Engineering, NingboTech University Ningbo 315100 P. R. China
| |
Collapse
|
2
|
Chen KW, Zhou XY, Dai XJ, Chen YT, Li SX, Gong CH, Wang P, Mao P, Jiao Y, Chen K, Yang Y. Sulfur vacancy-rich bismuth sulfide nanowire derived from CAU-17 for radioactive iodine capture in complex environments: Performance and intrinsic mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134584. [PMID: 38761762 DOI: 10.1016/j.jhazmat.2024.134584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/27/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024]
Abstract
Effective capture and immobilization of volatile radioiodine from the off-gas of post-treatment plants is crucial for nuclear safety and public health, considering its long half-life, high toxicity, and environmental mobility. Herein, sulfur vacancy-rich Vs-Bi2S3@C nanocomposites were systematically synthesized via a one-step solvothermal vulcanization of CAU-17 precursor. Batch adsorption experiments demonstrated that the as-synthesized materials exhibited superior iodine adsorption capacity (1505.8 mg g-1 at 200 °C), fast equilibrium time (60 min), and high chemisorption ratio (91.7%), which might benefit from the nanowire structure and abundant sulfur vacancies of Bi2S3. Furthermore, Vs-Bi2S3@C composites exhibited excellent iodine capture performance in complex environments (high temperatures, high humidity and radiation exposure). Mechanistic investigations revealed that the I2 capture by fabricated materials primarily involved the chemical adsorption between Bi2S3 and I2 to form BiI3, and the interaction of I2 with electrons provided by sulfur vacancies to form polyiodide anions (I3-). The post-adsorbed iodine samples were successfully immobilized into commercial glass fractions in a stable form (BixOyI), exhibiting a normalized iodine leaching rate of 3.81 × 10-5 g m-2 d-1. Overall, our work offers a novel strategy for the design of adsorbent materials tailed for efficient capture and immobilization of volatile radioiodine.
Collapse
Affiliation(s)
- Kai-Wei Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xin-Yu Zhou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiao-Jun Dai
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yi-Ting Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shu-Xuan Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chun-Hui Gong
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Peng Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ping Mao
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Yan Jiao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Kai Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yi Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
3
|
Jung YE, Yang JH, Yim MS. Investigation of bismuth-based metal-organic frameworks for effective capture and immobilization of radioiodine gas. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133777. [PMID: 38359759 DOI: 10.1016/j.jhazmat.2024.133777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/17/2024]
Abstract
In this study, we investigated the use of Bi-mna, a specific type of bismuth metal organic framework (MOF) for the capture and disposal of iodine, a key nuclide of concern in nuclear fuel reprocessing plants and nuclear power plants. To find the suitable form of Bi-mna for the purpose, experiments were performed by synthesizing four different Bi-mna with varying reagent ratios and connecting iodine adsorption and conversion for immobilization. After iodine adsorption and characterization to investigate their adsorption mechanisms, the Bi-mna samples went through conversion for immobilization to fix captured iodine into the adsorbents. The converted materials are characterized to examine their thermal stability. The Bi-2mna, showing the best performance of adsorption and thermal stability after the conversion, was selected to explore its chemical stability. According to the test results, the converted compound showed relatively low leaching rate (3.06 ×10-5 g/m2∙day) compared with other iodine containing waste forms for disposal. Based on the results, we proposed the Bi-2mna as a candidate material as iodine adsorbent as well as waste form precursor. ENVIRONMENTAL IMPLICATION: Radioiodine a key nuclide of concern in nuclear fuel reprocessing plants and nuclear power plants. Once ingested, it is accumulated in thyroid grand, causing negative health effects. Currently, a typical radioiodine adsorbent is silver-based zeolites. Despite a strong affinity to iodine of silver, it has a chemical toxicity that causes a potential issue in disposal. Therefore, it is substantially required to develop new type of adsorbents which are both good for capture and disposal of radioiodine. In this respect, we suggested a bismuth-based metal-organic framework as an alternative adsorbent to manage the life cycle of radioiodine.
Collapse
Affiliation(s)
- Young Eun Jung
- Advanced Fuel Cycle Technology Division, Korea Atomic Energy Research Institute, 111 Daedeok-daero, 989 beon-gil, Yuseong-gu, Daejeon 34057, South Korea
| | - Jae Hwan Yang
- Department of Environmental & IT Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, South Korea.
| | - Man-Sung Yim
- Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea.
| |
Collapse
|
4
|
Chee TS, Lee S, Ng WJ, Akmal M, Ryu HJ. Bi 0-Reduced Graphene Oxide Composites for the Enhanced Capture and Cold Immobilization of Off-Gas Radioactive Iodine. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40438-40450. [PMID: 37581564 DOI: 10.1021/acsami.3c06761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Radioactive waste management is critical for maintaining the sustainability of nuclear fuel cycles. In this study, we propose a novel bismuth-based reduced graphene oxide (Bi0-rGO) composite for the immobilization of off-gas radioactive iodine. This material synthesized via a solvothermal route exhibited a low surface area (2.96 m2/g) combined with a maximum iodine sorption capacity of 1228 ± 25 mg/g at 200 °C. The iodine sorbent was mixed with Bi2O3 powder and distilled water to fabricate waste matrices, which were cold-sintered at 300 °C under a uniaxial pressure of 500 MPa for 20 min to achieve a relative density of ∼98% and Vickers hardness of 1.3 ± 0.1 GPa. The utilized methodology reduced the iodine leaching rate by approximately 3 orders of magnitude through the formation of a chemically durable iodine-bearing waste form (BiOI). This study demonstrates the high potential of Bi0-rGO as an innovative solution for the immobilization of radioactive waste at relatively low temperatures.
Collapse
Affiliation(s)
- Tien-Shee Chee
- Department of Materials Science and Engineering, KAIST, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sujeong Lee
- Department of Materials Science and Engineering, KAIST, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Woei Jer Ng
- Department of Nuclear and Quantum Engineering, KAIST, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Muhammad Akmal
- Department of Materials Science and Engineering, KAIST, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ho Jin Ryu
- Department of Materials Science and Engineering, KAIST, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Nuclear and Quantum Engineering, KAIST, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
5
|
Hao M, Liu Y, Wu W, Wang S, Yang X, Chen Z, Tang Z, Huang Q, Wang S, Yang H, Wang X. Advanced porous adsorbents for radionuclides elimination. ENERGYCHEM 2023; 5:100101. [DOI: doi.org/10.1016/j.enchem.2023.100101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|
6
|
Yu G, Liu Y, Yang X, Li Y, Li Y, Zhang Y, He C. A robust sp2 carbon-conjugated COF for efficient iodine uptake. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
7
|
Hao Y, Tian Z, Liu C, Xiao C. Recent advances in the removal of radioactive iodine by bismuth-based materials. Front Chem 2023; 11:1122484. [PMID: 36762197 PMCID: PMC9902955 DOI: 10.3389/fchem.2023.1122484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
Nowadays, the demand for nuclear power is continue increasing due to its safety, cleanliness, and high economic benefits. Radioactive iodine from nuclear accidents and nuclear waste treatment processes poses a threat to humans and the environment. Therefore, the capture and storage of radioactive iodine are vital. Bismuth-based (Bi-based) materials have drawn much attention as low-toxicity and economical materials for removing and immobilizing iodine. Recent advances in adsorption and immobilization of vapor iodine by the Bi-based materials are discussed in this review, in addition with the removal of iodine from solution. It points out the neglected areas in this research topic and provides suggestions for further development and application of Bi-based materials in the removal of radioactive iodine.
Collapse
Affiliation(s)
- Yuxun Hao
- Institute of Zhejiang University-Quzhou, Quzhou, China,College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Zhenjiang Tian
- Institute of Zhejiang University-Quzhou, Quzhou, China,College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Chuanying Liu
- Institute of Zhejiang University-Quzhou, Quzhou, China,College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China,*Correspondence: Chuanying Liu, ; Chengliang Xiao,
| | - Chengliang Xiao
- Institute of Zhejiang University-Quzhou, Quzhou, China,College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China,*Correspondence: Chuanying Liu, ; Chengliang Xiao,
| |
Collapse
|
8
|
Han Z, Lu Y, Li Y, Wu R, Huang Z. Strategy to combine two functional components: Efficient nano material development for iodine immobilization. CHEMOSPHERE 2022; 309:136477. [PMID: 36162517 DOI: 10.1016/j.chemosphere.2022.136477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/31/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
The development of effective radioactive iodine adsorption materials from nuclear waste remains a significant challenge due to the drawbacks of the previous technologies such as complex synthesis process, high cost, and low stability. In this work, a Metal Oxidation-Carbon (MOC) composite material was designed and synthesized to solve this problem. The structure, composition, and physicochemical properties of this MOC were characterized to reveal its mesoporous material properties. Experiment results showed that this MOC material contain great physical and chemical adsorption efficiency towards iodine vapor, the adsorption capacity could up to 2647.54 mg/g. And the average desorption rate of 86.57% (in absolute ethanol) further proved its advanced recyclability. Moreover, this mesoporous material has great prospects in industrialization due to its simple one-step synthesis method, well-defined adsorption mechanism, and competitive application property.
Collapse
Affiliation(s)
- Zhen Han
- School of Chemistry and Chemical Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan, 643000, China; Sichuan Shenzhou Aute Agricultural Technology Co., Ltd, Neijiang, Sichuan, 641000, China
| | - Yi Lu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yuyang Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China; MVLS Grad School, College of Medical, Veterinary & Life Science, University of Glasgow, University Avenue G12 8QQ Glasgow, UK
| | - Rongzhen Wu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China; Sichuan Shenzhou Aute Agricultural Technology Co., Ltd, Neijiang, Sichuan, 641000, China; Department of Chemistry, Brown University, 324 Brook Street, Providence, RI, 02912, USA.
| | - Zhen Huang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China; Department of Chemistry, University of California Irvine, 1120 Natural Sciences II, Irvine, CA, 92697-2025, USA.
| |
Collapse
|
9
|
Highly stable iodine capture by pillared montmorillonite functionalized Bi2O3@g-C3N4 nanosheets. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Metal organic frameworks as a versatile platform for the radioactive iodine capture: State of the art developments and future prospects. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Patra K, Ansari SA, Mohapatra PK. Metal-organic frameworks as superior porous adsorbents for radionuclide sequestration: Current status and perspectives. J Chromatogr A 2021; 1655:462491. [PMID: 34482010 DOI: 10.1016/j.chroma.2021.462491] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/28/2021] [Accepted: 08/17/2021] [Indexed: 01/03/2023]
Abstract
Efficient separation of hazardous radionuclides from radioactive waste remains a challenge to the global acceptance of nuclear power due to complex nature of the waste, high radiotoxicities and presence of large number of interfering elements. Sorption of radioactive elements from liquid phase, gas phase or their solid particulates on various synthetic organic, inorganic or biological sorbents is looked as one of the options for their remediation. In this context, highly porous materials, termed as metal-organic frameworks (MOFs), have shown promise for efficient capturing of various types of radioactive elements. Major advantages that have been advocated for the application of MOFs in radionuclide sorption are their excellent chemical stability, and their large surface area due to abundant functional groups, and porosity. In this review, recent developments on the application of MOFs for radionuclide sequestration are briefly discussed. Focus has been devoted to address the separation of few crucial radioactive elements such as Th, U, Tc, Re, Se, Sr and Cs from aqueous solutions, which are important for liquid radioactive waste management. Apart from these radioactive metal ions, removal of radionuclide bearing gases such as I2, Xe, and Kr are also discussed. Aspects related to the interaction of MOFs with the radionuclides are also discussed. Finally, a perspective for comprehensive investigation of MOFs for their applications in radioactive waste management has been outlined.
Collapse
Affiliation(s)
- Kankan Patra
- Nuclear Recycles Board, Bhabha Atomic Research Centre, Tarapur 401502, India
| | - Seraj A Ansari
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India; Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
| | - Prasanta K Mohapatra
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India; Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| |
Collapse
|