1
|
Abounahia N, Shahab AA, Khan MM, Qiblawey H, Zaidi SJ. A Comprehensive Review of Performance of Polyacrylonitrile-Based Membranes for Forward Osmosis Water Separation and Purification Process. MEMBRANES 2023; 13:872. [PMID: 37999358 PMCID: PMC10672921 DOI: 10.3390/membranes13110872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 11/25/2023]
Abstract
Polyacrylonitrile (PAN), with its unique chemical, electrical, mechanical, and thermal properties, has become a crucial acrylic polymer for the industry. This polymer has been widely used to fabricate ultrafiltration, nanofiltration, and reverse osmosis membranes for water treatment applications. However, it recently started to be used to fabricate thin-film composite (TFC) and fiber-based forward osmosis (FO) membranes at a lab scale. Phase inversion and electrospinning methods were the most utilized techniques to fabricate PAN-based FO membranes. The PAN substrate layer could function as a good support layer to create TFC and fiber membranes with excellent performance under FO process conditions by selecting the proper modification techniques. The various modification techniques used to enhance PAN-based FO performance include interfacial polymerization, layer-by-layer assembly, simple coating, and incorporating nanofillers. Thus, the fabrication and modification techniques of PAN-based porous FO membranes have been highlighted in this work. Also, the performance of these FO membranes was investigated. Finally, perspectives and potential directions for further study on PAN-based FO membranes are presented in light of the developments in this area. This review is expected to aid the scientific community in creating novel effective porous FO polymeric membranes based on PAN polymer for various water and wastewater treatment applications.
Collapse
Affiliation(s)
- Nada Abounahia
- UNESCO Chair in Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Arqam Azad Shahab
- UNESCO Chair in Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Maryam Mohammad Khan
- UNESCO Chair in Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Hazim Qiblawey
- Department of Chemical Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Syed Javaid Zaidi
- UNESCO Chair in Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
2
|
Photo–Redox Properties of –SO3H Functionalized Metal-Free g-C3N4 and Its Application in the Photooxidation of Sunset Yellow FCF and Photoreduction of Cr (VI). Catalysts 2022. [DOI: 10.3390/catal12070751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In this work, we synthesized a metal-free sulfonic functionalized graphitic carbon nitride using sulfuric acid through the wet impregnation technique. The functionalization of sulfonic groups (–SO3H) on g-C3N4 will promote a high surface charge density and charge separation owing to its high electronegativity. The g-C3N4–SO3H shows excellent optical/electronic and surface properties towards enhanced photo–redox reactions. The sulfonic groups also facilitate the availability of more separated charge carriers for photocatalytic oxidation and reduction reactions. The as-synthesized material has been characterized by different spectroscopic tools to confirm the presence of functionalized –SO3H groups and optoelectronic possessions. The photocatalytic responses of g-C3N4–SO3H result in 99.56% photoreduction of Cr (VI) and 99.61% photooxidation of Sunset Yellow FCF within 16 min and 20 min, respectively, of visible light irradiation. The g-C3N4–SO3H catalyst exhibits a high apparent rate constant (Kapp) towards the degradation of Cr (VI), and SSY, i.e., 0.783 min−1 and 0.706 min−1, respectively. The intense optical–electrochemical properties and potentially involved active species have been analyzed through transient photocurrent, electrochemical impedance, and scavenging studies. Consequently, the photocatalytic performances are studied under different reaction parameters, and the plausible photocatalytic mechanism is discussed based on the results.
Collapse
|
3
|
Rosiles-González V, Le Lagadec R, Varguez-Catzim P, Loria-Bastarrachea MI, González-Díaz A, Hernández-Núñez E, Aguilar-Vega M, González-Díaz MO. Preparation and Characterization of Strongly Sulfonated Acid Block and Random Copolymer Membranes for Acetic Acid Esterification with 2-Propanol. Polymers (Basel) 2022; 14:polym14132595. [PMID: 35808641 PMCID: PMC9269333 DOI: 10.3390/polym14132595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 02/07/2023] Open
Abstract
In this paper, we report the synthesis of block and random copolymers of 2-acrylamido-2-methyl-1-propane sulfonic acid (AMPS) and methyl methacrylate (MMA), with different AMPS feed ratios. These solution-processable copolymers with strongly sulfonated acid groups resulted in membranes with tunable ion exchange (IEC) and water absorption capacities. AFM images confirmed the microphase separation of PAMPS-b-PMMA-1:1 block copolymer membrane, annealed under the appropriate conditions. The resulting copolymers from the random combination of a 1:1 molar ratio of AMPS and MMA monomers are effective at enhancing the esterification conversion of acetic acid, when compared with a reaction catalyzed by PAMPS-b-PMMA block copolymers and the previously studied catalytic membranes. With the PAMPS-co-PMMA-1:1 membrane, the esterification reaction using acetic acid achieved 85% isopropyl acetate. These results are closely correlated with the increase in IEC (2.63 mmol H+g−1) and the relationship between weight loss (20.3%) and swelling degree (68%) in 2-propanol.
Collapse
Affiliation(s)
- Verónica Rosiles-González
- Laboratorio de Membranas, Unidad de Materiales, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130, Chuburná de Hidalgo, Mérida 97205, Mexico; (V.R.-G.); (P.V.-C.); (M.I.L.-B.); (M.A.-V.)
| | - Ronan Le Lagadec
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México 04510, Mexico;
| | - Paulina Varguez-Catzim
- Laboratorio de Membranas, Unidad de Materiales, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130, Chuburná de Hidalgo, Mérida 97205, Mexico; (V.R.-G.); (P.V.-C.); (M.I.L.-B.); (M.A.-V.)
| | - María I. Loria-Bastarrachea
- Laboratorio de Membranas, Unidad de Materiales, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130, Chuburná de Hidalgo, Mérida 97205, Mexico; (V.R.-G.); (P.V.-C.); (M.I.L.-B.); (M.A.-V.)
| | - Abigail González-Díaz
- Instituto Nacional de Electricidad y Energías Limpias, Reforma 113, Col. Palmira, Cuernavaca 62490, Mexico;
| | - Emanuel Hernández-Núñez
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Mérida, Mérida 97310, Mexico;
| | - Manuel Aguilar-Vega
- Laboratorio de Membranas, Unidad de Materiales, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130, Chuburná de Hidalgo, Mérida 97205, Mexico; (V.R.-G.); (P.V.-C.); (M.I.L.-B.); (M.A.-V.)
| | - María Ortencia González-Díaz
- CONACYT—Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130, Chuburná de Hidalgo, Mérida 97205, Mexico
- Correspondence:
| |
Collapse
|
4
|
Sharma V, Agrawal A, Singh O, Goyal R, Sarkar B, Gopinathan N, Gumfekar SP. A Comprehensive Review on the Synthesis Techniques of Porous Materials for Gas Separation and Catalysis. CAN J CHEM ENG 2022. [DOI: 10.1002/cjce.24507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Vikrant Sharma
- Department of Chemical Engineering Indian Institute of Technology Ropar India
| | - Ankit Agrawal
- CSIR‐Indian Institute of Petroleum Dehradun India
- Academy of Scientific and Innovative Research (AcSIR), Gaziabad India
| | - Omvir Singh
- CSIR‐Indian Institute of Petroleum Dehradun India
- Academy of Scientific and Innovative Research (AcSIR), Gaziabad India
| | - Reena Goyal
- CSIR‐Indian Institute of Petroleum Dehradun India
- Department of Chemical Engineering Indian Institute of Technology Roorkee India
| | - Bipul Sarkar
- CSIR‐Indian Institute of Petroleum Dehradun India
| | - Navin Gopinathan
- Department of Chemical Engineering Indian Institute of Technology Ropar India
| | - Sarang P. Gumfekar
- Department of Chemical Engineering Indian Institute of Technology Ropar India
| |
Collapse
|
5
|
Industrial-scale fabrication of mordenite membranes by dual heating method for production of ethyl acetate in an industrial VP-esterification plant. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
6
|
Han J, Liang Y, He C, Tong Y, Li W. Porous PVA- g-SPA/PVA-SA Catalytic Composite Membrane via Lyophilization for Esterification Enhancement. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2660-2667. [PMID: 35175780 DOI: 10.1021/acs.langmuir.1c03381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A catalytic composite membrane was developed for the enhancement of esterification by lyophilization for the first time. The catalytic composite membrane was composed of a poly(vinyl alcohol) (PVA)-sodium alginate (SA) separation layer and a spongy porous catalytic layer cross-linked by PVA and 4-sulfophthalic acid (SPA). Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) results indicated the successful synthesis of the catalytic composite membrane. The membrane properties were evaluated by ethanol dehydration and esterification. The conversion rate of acetic acid reached 95.9% after 12 h. Compared with batch reactions, the conversion rate increased by 24.4%. After five cycles, the membrane still maintained outstanding catalytic activity. The resistance of mass transfer was analyzed, and the results showed that the porous structure reduced the catalytic layer resistance to total resistance from 70.27 to 32.88%. The composite membrane with a spongy porous catalytic layer exhibited superior dehydration and catalytic performance.
Collapse
Affiliation(s)
- Jie Han
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yao Liang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chengxiu He
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yujia Tong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Weixing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
7
|
Safikhani A, Vatanpour V, Habibzadeh S, Saeb MR. Application of graphitic carbon nitrides in developing polymeric membranes: A review. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.07.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Shi J, Wang T, Han J, Liang Y, Tong Y, Li W. Fabrication of
MWCNT
S
‐functionalized
SA
pervaporation composite membranes to enhance esterification. J Appl Polym Sci 2021. [DOI: 10.1002/app.51573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jiayun Shi
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Taishan Wang
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Jie Han
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Yao Liang
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Yujia Tong
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Weixing Li
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Nanjing Tech University Nanjing China
| |
Collapse
|