1
|
Luo S, Hu CY, Xu X. Ammonia-responsive chitosan/polymethacrylamide double network hydrogels with high-stretchability, fatigue resistance and anti-freezing for real-time chicken breast spoilage monitoring. Int J Biol Macromol 2024; 268:131617. [PMID: 38631583 DOI: 10.1016/j.ijbiomac.2024.131617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/01/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
Hydrogels are a promising option for detecting food spoilage in humid conditions, but current indicators are prone to mechanical flaws, posing a concern for packaging systems that require strong mechanical properties. Herein, a double network hydrogel was prepared by polymerizing methacrylamide in a chitosan system with aluminum chloride and glycerol. The resulting hydrogel demonstrated high stretchability (strain >1500 %), notch insensitivity, excellent fatigue resistance, and exceptional anti-freezing capabilities even at -21 °C. When incorporating bromothymol blue (BB) or methyl red (MR), or mixtures of these dyes into the hydrogels as indicators, they exhibited sensitive colorimetric responses to pH and NH3 levels at different temperatures. Hydrogels immobilizing BB to MR ratios of 1:1 and 1:2 displayed clearer and more sensitive color responses when packed into chicken breast, with a sensitivity level of 1.5 ppm of total volatile basic nitrogen (TVB-N). This color response correlated positively with the accumulation of TVB-N on the packaging during storage at both 25 °C and 4 °C, providing sensitive indications of chicken breast deterioration. Overall, the developed hydrogels and indicators demonstrate enhanced performance characteristics, including excellent mechanical strength and highly NH3-sensitive color responses, making significant contributions to the food spoilage detection and intelligent packaging systems field.
Collapse
Affiliation(s)
- Siyao Luo
- Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, College of Packaging Engineering, Jinan University, Qianshan Road 206, Zhuhai 519070, China
| | - Chang-Ying Hu
- Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, College of Packaging Engineering, Jinan University, Qianshan Road 206, Zhuhai 519070, China
| | - Xiaowen Xu
- Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, College of Packaging Engineering, Jinan University, Qianshan Road 206, Zhuhai 519070, China.
| |
Collapse
|
2
|
Xu Y, Tan C, He Y, Luo B, Liu M. Chitin nanocrystals stabilized liquid metal for highly stretchable and anti-freeze hydrogels as flexible strain sensor. Carbohydr Polym 2024; 328:121728. [PMID: 38220327 DOI: 10.1016/j.carbpol.2023.121728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 01/16/2024]
Abstract
Conductive hydrogels show extensive applications in flexible electronics and biomedical areas, but it is a challenge to simultaneously achieve high mechanical properties, satisfied electrical conductivity, good biocompatibility, self-recovery and anti-freezing properties through a simple preparation method. Herein, chitin nanocrystals (ChNCs) were employed to encapsulate liquid metal nanoparticles (LMNPs) to ensure the dispersion stability of LMNPs in a hydrogel system composed of polyacrylamide (PAM) and polyvinyl alcohol (PVA). The synergistic effect of ChNCs-stabilized LMNPs imparts remarkable conductivity to the hydrogel, making it an effective strain sensor for human motion. With 1 % LMNPs, the composite hydrogel stretches up to 2100 %, showing excellent stretchability. Under 10 cycles of 200 % strain, hysteresis loop curves overlap, indicating outstanding fatigue resistance. The hydrogel exhibits remarkable self-recovery, enduring 1400 % deformation without rupture. In addition, its effective antifreeze properties result from immersion in a glycerol-water solvent. Even at -20 °C and 60 °C, the hydrogel maintains stable, reproducible resistance changes at 150 % tensile strain. Therefore, the high-performance conductive hydrogel containing ChNCs stabilized LM has promising applications in flexible wearable sensing devices.
Collapse
Affiliation(s)
- Yuqian Xu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China
| | - Cuiying Tan
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China
| | - Yunqing He
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China
| | - Binghong Luo
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China
| | - Mingxian Liu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, PR China; Guangdong Provincial Key Laboratory of Speed Capability Research, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
3
|
Xian T, Xu X, Liu W, Ding J. Ultrasensitive stretchable bimodal sensor based on novel elastomer and ionic liquid for temperature and humidity detection. Heliyon 2024; 10:e25874. [PMID: 38375242 PMCID: PMC10875449 DOI: 10.1016/j.heliyon.2024.e25874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/21/2024] Open
Abstract
In this work, we present a novel stretchable bimodal sensor that can simultaneously detect temperature and humidity changes based on poly-hydroxyethyl acrylate (PHEA) elastomer infused with 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF4) ionic liquid. The sensor exhibits high transparency, stability, and biocompatibility, as well as excellent mechanical and sensing properties. The sensor can achieve a maximum strain of 761%, a sensitivity of 4.5%/°C at room temperature, a detection range from -35 to 120 °C, and a response time of 10 ms. The sensor is able to provide acute response to movement of human hand at close range and can detect temperature changes as small as 0.004 °C in the range of 20-30 °C. The sensor also responds to humidity change, showing a high sensitivity to humidity change of 4.4%/RH% under the temperature of 30 °C. The sensor can be used for various applications in wearable electronics, human-machine interfaces, and soft robotics.
Collapse
Affiliation(s)
- Tongfeng Xian
- Department of Material Science and Engineering, National University of Singapore, 9 Engineering Drive 1, #03-09 EA, 117575, Singapore
| | - Xin Xu
- Department of Material Science and Engineering, National University of Singapore, 9 Engineering Drive 1, #03-09 EA, 117575, Singapore
| | - Weilin Liu
- Department of Material Science and Engineering, National University of Singapore, 9 Engineering Drive 1, #03-09 EA, 117575, Singapore
| | - Jun Ding
- Department of Material Science and Engineering, National University of Singapore, 9 Engineering Drive 1, #03-09 EA, 117575, Singapore
| |
Collapse
|
4
|
Sinad KVG, Ebubechukwu RC, Chu CK. Recent advances in double network hydrogels based on naturally-derived polymers: synthesis, properties, and biological applications. J Mater Chem B 2023; 11:11460-11482. [PMID: 38047404 DOI: 10.1039/d3tb00773a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Hydrogels composed of naturally-derived biopolymers have garnered significant research interest due to the bioavailability and biocompatibility of starting materials. However, translating these advantages to practical use is challenged by limitations of mechanical properties and stability of the resulting materials. The development of double network (DN) hydrogels has led to greatly enhanced mechanical properties and shows promise toward broadening the applications of conventional synthetic or natural hydrogels. This review highlights recently developed protein-based and polysaccharide-based DN hydrogels. For each biopolymer, we focus on a subset of DN hydrogels centered around a theme related to synthetic design or applications. Network structures and crosslinking mechanisms that endow enhanced mechanical properties and performance to the materials are discussed. Important applications, including tissue engineering, drug delivery, bioadhesives, wound healing, and wearable sensors, that arise from the inherent properties of the natural polymer or its combination with other materials are also emphasized. Finally, we discuss ongoing challenges to stimulate the discovery of new design principles for the future of DN hydrogels based on naturally-derived polymers for biological applications.
Collapse
Affiliation(s)
| | - Ruth C Ebubechukwu
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania, USA.
| | - Crystal K Chu
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania, USA.
| |
Collapse
|
5
|
Saeidi M, Chenani H, Orouji M, Adel Rastkhiz M, Bolghanabadi N, Vakili S, Mohamadnia Z, Hatamie A, Simchi A(A. Electrochemical Wearable Biosensors and Bioelectronic Devices Based on Hydrogels: Mechanical Properties and Electrochemical Behavior. BIOSENSORS 2023; 13:823. [PMID: 37622909 PMCID: PMC10452289 DOI: 10.3390/bios13080823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023]
Abstract
Hydrogel-based wearable electrochemical biosensors (HWEBs) are emerging biomedical devices that have recently received immense interest. The exceptional properties of HWEBs include excellent biocompatibility with hydrophilic nature, high porosity, tailorable permeability, the capability of reliable and accurate detection of disease biomarkers, suitable device-human interface, facile adjustability, and stimuli responsive to the nanofiller materials. Although the biomimetic three-dimensional hydrogels can immobilize bioreceptors, such as enzymes and aptamers, without any loss in their activities. However, most HWEBs suffer from low mechanical strength and electrical conductivity. Many studies have been performed on emerging electroactive nanofillers, including biomacromolecules, carbon-based materials, and inorganic and organic nanomaterials, to tackle these issues. Non-conductive hydrogels and even conductive hydrogels may be modified by nanofillers, as well as redox species. All these modifications have led to the design and development of efficient nanocomposites as electrochemical biosensors. In this review, both conductive-based and non-conductive-based hydrogels derived from natural and synthetic polymers are systematically reviewed. The main synthesis methods and characterization techniques are addressed. The mechanical properties and electrochemical behavior of HWEBs are discussed in detail. Finally, the prospects and potential applications of HWEBs in biosensing, healthcare monitoring, and clinical diagnostics are highlighted.
Collapse
Affiliation(s)
- Mohsen Saeidi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Hossein Chenani
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Mina Orouji
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - MahsaSadat Adel Rastkhiz
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Nafiseh Bolghanabadi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Shaghayegh Vakili
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran;
| | - Zahra Mohamadnia
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan 45137-66731, Iran;
| | - Amir Hatamie
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan 45137-66731, Iran;
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Abdolreza (Arash) Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran 14588-89694, Iran
| |
Collapse
|
6
|
Xue H, Wang D, Jin M, Gao H, Wang X, Xia L, Li D, Sun K, Wang H, Dong X, Zhang C, Cong F, Lin J. Hydrogel electrodes with conductive and substrate-adhesive layers for noninvasive long-term EEG acquisition. MICROSYSTEMS & NANOENGINEERING 2023; 9:79. [PMID: 37313471 PMCID: PMC10258200 DOI: 10.1038/s41378-023-00524-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 02/28/2023] [Accepted: 03/15/2023] [Indexed: 06/15/2023]
Abstract
Noninvasive brain-computer interfaces (BCIs) show great potential in applications including sleep monitoring, fatigue alerts, neurofeedback training, etc. While noninvasive BCIs do not impose any procedural risk to users (as opposed to invasive BCIs), the acquisition of high-quality electroencephalograms (EEGs) in the long term has been challenging due to the limitations of current electrodes. Herein, we developed a semidry double-layer hydrogel electrode that not only records EEG signals at a resolution comparable to that of wet electrodes but is also able to withstand up to 12 h of continuous EEG acquisition. The electrode comprises dual hydrogel layers: a conductive layer that features high conductivity, low skin-contact impedance, and high robustness; and an adhesive layer that can bond to glass or plastic substrates to reduce motion artifacts in wearing conditions. Water retention in the hydrogel is stable, and the measured skin-contact impedance of the hydrogel electrode is comparable to that of wet electrodes (conductive paste) and drastically lower than that of dry electrodes (metal pin). Cytotoxicity and skin irritation tests show that the hydrogel electrode has excellent biocompatibility. Finally, the developed hydrogel electrode was evaluated in both N170 and P300 event-related potential (ERP) tests on human volunteers. The hydrogel electrode captured the expected ERP waveforms in both the N170 and P300 tests, showing similarities in the waveforms generated by wet electrodes. In contrast, dry electrodes fail to detect the triggered potential due to low signal quality. In addition, our hydrogel electrode can acquire EEG for up to 12 h and is ready for recycled use (7-day tests). Altogether, the results suggest that our semidry double-layer hydrogel electrodes are able to detect ERPs in the long term in an easy-to-use fashion, potentially opening up numerous applications in real-life scenarios for noninvasive BCI.
Collapse
Affiliation(s)
- Hailing Xue
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, 116024 Dalian, China
| | - Dongyang Wang
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, 116024 Dalian, China
| | - Mingyan Jin
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, 116024 Dalian, China
| | - Hanbing Gao
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, 116024 Dalian, China
| | - Xuhui Wang
- Key Laboratory of Energy Materials and School of Materials Science and Engineering, Dalian University of Technology, 116024 Dalian, China
| | - Long Xia
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, 116024 Dalian, China
| | - Dong’ang Li
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, 116024 Dalian, China
| | - Kai Sun
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, 116024 Dalian, China
| | - Huanan Wang
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, 116024 Dalian, China
| | - Xufeng Dong
- Key Laboratory of Energy Materials and School of Materials Science and Engineering, Dalian University of Technology, 116024 Dalian, China
| | - Chi Zhang
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, 116024 Dalian, China
| | - Fengyu Cong
- School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, 116024 Dalian, China
| | - Jiaqi Lin
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, 116024 Dalian, China
| |
Collapse
|
7
|
Liu S, Li Q, Wang J, Wang X, Mbola NM, Meng Z, Xue M. Double-Network Hydrogel-Based Photonic Crystal Sensor for Mechanical Force Naked Eye Sensing and Its Application in Medical Compressive or Stretchy Instruments. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2192-2203. [PMID: 36575052 DOI: 10.1021/acsami.2c18950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Herein, we coalesced a poly(acrylamide-co-N-Acryloyl phenylalanine)/polyacrylamide double-network (P(AM-co-APA)/PAM DN) hydrogel with a photonic crystal array, fabricating a mechanochromic sensor for application in flexible medical instruments by naked eye monitoring. The intensified mechanical properties of the DN hydrogel were proved by the mechanical property tests, which are attributed to the interactions of chemical bonds and hydrogen bonds between the two polymer networks. In the range of stress from 0 to 328 kPa, the reflected light wavelength of this sensor changed from 659 to 480 nm and the color changed from red to blue in response; in the range of pressure from 0 to 85 kPa, the sensor exhibited a spectrum changing from 658 nm to 467 nm, covering almost the whole visible color range. The prepared sensor was incorporated into medical instruments including the femoral artery hemostat and bandage to indicate pressure and tensile stress in practical applications. Within the appropriate pressure for wound recovery, the sensitivity and correlation between the external stimulus of pressure and wavelength of this integrated sensor were 5.58 nm·kPa-1 and over 0.99, respectively. Ultimately, the sensor proved to be tough, sensitive, and durable, showing a broad prospect of a series of future applications.
Collapse
Affiliation(s)
- Songtao Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Qi Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Jiaxin Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Xingyu Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Nyv Mondele Mbola
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Zihui Meng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, China
| | - Min Xue
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, China
| |
Collapse
|
8
|
Zeng LY, Wang XC, Wen Y, Chen HM, Ni HL, Yu WH, Bai YF, Zhao KQ, Hu P. Anti-freezing dual-network hydrogels with high-strength, self-adhesive and strain-sensitive for flexible sensors. Carbohydr Polym 2023; 300:120229. [DOI: 10.1016/j.carbpol.2022.120229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/19/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022]
|
9
|
Zhang X, Liu B, Feng W, Wei W, Shen W, Fang S, Fan K. Fully physically crosslinked POSS-based hydrogel with low swelling, high stretchable, self-healing, and conductive properties for human motion sensing. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
High-strength, tough, and anti-swelling Schiff base hydrogels with fluorescent encryption writing, solvent response and double shape memory functions. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Wang Z, Valenzuela C, Wu J, Chen Y, Wang L, Feng W. Bioinspired Freeze-Tolerant Soft Materials: Design, Properties, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201597. [PMID: 35971186 DOI: 10.1002/smll.202201597] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/12/2022] [Indexed: 06/15/2023]
Abstract
In nature, many biological organisms have developed the exceptional antifreezing ability to survive in extremely cold environments. Inspired by the freeze resistance of these organisms, researchers have devoted extensive efforts to develop advanced freeze-tolerant soft materials and explore their potential applications in diverse areas such as electronic skin, soft robotics, flexible energy, and biological science. Herein, a comprehensive overview on the recent advancement of freeze-tolerant soft materials and their emerging applications from the perspective of bioinspiration and advanced material engineering is provided. First, the mechanisms underlying the freeze tolerance of cold-enduring biological organisms are introduced. Then, engineering strategies for developing antifreezing soft materials are summarized. Thereafter, recent advances in freeze-tolerant soft materials for different technological applications such as smart sensors and actuators, energy harvesting and storage, and cryogenic medical applications are presented. Finally, future challenges and opportunities for the rapid development of bioinspired freeze-tolerant soft materials are discussed.
Collapse
Affiliation(s)
- Zhiyong Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Cristian Valenzuela
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Jianhua Wu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yuanhao Chen
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Ling Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
- Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| |
Collapse
|
12
|
Zhang Q, Li C, Du X, Zhong H, He Z, Hong P, Li Y, Jing Z. High strength, tough and self-healing chitosan-based nanocomposite hydrogels based on the synergistic effects of hydrogen bond and coordination bond. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03163-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
13
|
Diao Q, Liu H, Yang Y. A Highly Mechanical, Conductive, and Cryophylactic Double Network Hydrogel for Flexible and Low-Temperature Tolerant Strain Sensors. Gels 2022; 8:gels8070424. [PMID: 35877509 PMCID: PMC9322378 DOI: 10.3390/gels8070424] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Due to their stretchability, conductivity, and good biocompatibility, hydrogels have been recognized as potential materials for flexible sensors. However, it is still challenging for hydrogels to meet the conductivity, mechanical strength, and freeze-resistant requirements in practice. In this study, a chitosan-poly (acrylic acid-co-acrylamide) double network (DN) hydrogel was prepared by immersing the chitosan-poly (acrylic acid-co-acrylamide) composite hydrogel into Fe2(SO4)3 solution. Due to the formation of an energy-dissipative chitosan physical network, the DN hydrogel possessed excellent tensile and compression properties. Moreover, the incorporation of the inorganic salt endowed the DN hydrogel with excellent conductivity and freeze-resistance. The strain sensor prepared using this DN hydrogel displayed remarkable sensitivity and reliability in detecting stretching and bending deformations. In addition, this DN hydrogel sensor also worked well at a lower temperature (−20 °C). The highly mechanical, conductive, and freeze-resistant DN hydrogel revealed a promising application in the field of wearable devices.
Collapse
Affiliation(s)
- Quan Diao
- College of Materials & Chemical Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China
- Correspondence: (Q.D.); (Y.Y.)
| | - Hongyan Liu
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China;
| | - Yanyu Yang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China;
- Correspondence: (Q.D.); (Y.Y.)
| |
Collapse
|
14
|
Qi C, Dong Z, Huang Y, Xu J, Lei C. Tough, Anti-Swelling Supramolecular Hydrogels Mediated by Surfactant-Polymer Interactions for Underwater Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30385-30397. [PMID: 35737578 DOI: 10.1021/acsami.2c06395] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
It is a great challenge for traditional hydrogel-based sensors to be effective underwater due to unsatisfactory water resistance and insufficient wet adhesion. Herein, a tough supramolecular hydrogel aiming at underwater sensing is prepared by the modification of hydrophilic poly(acrylic acid) (PAA) with a small amount of hydrophobic lauryl methacrylate (LMA) in the presence of high concentrations of the cationic surfactant cetyltrimethylammonium bromide (CTAB). Owing to the synergistic effects of the electrostatic interactions and hydrophobic associations of CTAB with the P(AA-co-LMA) copolymer, the hydrogel with a water content of approximately 58.5 wt % demonstrates outstanding anti-swelling feature, superior tensile strength (≈1.6 MPa), large stretchability (>900%), rapid room-temperature self-recovery (≈3 min at 100% strain), and robust wet adhesion to diverse substrates. Moreover, the strain sensor based on the hydrogel displays keen sensitivity in a sensing range of 0-900% (gauge factor is 0.42, 3.44, 5.44, and 7.39 in the strain range of 0-100, 100-300, 300-500, and 500-900%, respectively) and pronounced stability both in air and underwater. Additionally, the hydrogel can be easily recycled by dissolving in anhydrous ethanol. This work provides a facile strategy to fabricate eco-friendly, tough supramolecular hydrogels for underwater sensing.
Collapse
Affiliation(s)
- Chuyi Qi
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P.R. China
| | - Zhixian Dong
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P.R. China
| | - Yuekai Huang
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P.R. China
| | - Jinbao Xu
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P.R. China
| | - Caihong Lei
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P.R. China
| |
Collapse
|
15
|
Zhou C, Wu T, Xie X, Song G, Ma X, Mu Q, Huang Z, Liu X, Sun C, Xu W. Advances and challenges in conductive hydrogels: From properties to applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
16
|
Ling Q, Liu W, Liu J, Zhao L, Ren Z, Gu H. Highly Sensitive and Robust Polysaccharide-Based Composite Hydrogel Sensor Integrated with Underwater Repeatable Self-Adhesion and Rapid Self-Healing for Human Motion Detection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24741-24754. [PMID: 35580208 DOI: 10.1021/acsami.2c01785] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tough, biocompatible, and conductive hydrogel-based strain sensors are attractive in the fields of human motion detection and wearable electronics, whereas it is still a great challenge to simultaneously integrate underwater adhesion and self-healing properties into one hydrogel sensor. Here, a highly stretchable, sensitive, and multifunctional polysaccharide-based dual-network hydrogel sensor was constructed using dialdehyde carboxymethyl cellulose (DCMC), chitosan (CS), poly(acrylic acid) (PAA), and aluminum ions (Al3+). The obtained DCMC/CS/PAA (DCP) composite hydrogels exhibit robust mechanical strength and good adhesive and self-healing properties, due to the reversible dynamic chemical bonds and physical interactions such as Schiff base bonds and metal coordination. The conductivity of hydrogel is 2.6 S/m, and the sensitivity (gauge factor (GF)) is up to 15.56. Notably, the DCP hydrogel shows excellent underwater repeatable adhesion to animal tissues and good self-healing properties in water (self-healing rate > 90%, self-healing time < 10 min). The DCP hydrogel strain sensor can sensitively monitor human motion including finger bending, smiling, and wrist pulse, and it can steadily detect human movement underwater. This work is expected to provide a new strategy for the design of high-performance intelligent sensors, particularly for applications in wet and underwater environments.
Collapse
Affiliation(s)
- Qiangjun Ling
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Wentao Liu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Jiachang Liu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Li Zhao
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Zhijun Ren
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Haibin Gu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| |
Collapse
|
17
|
Ling Q, Ke T, Liu W, Ren Z, Zhao L, Gu H. Tough, Repeatedly Adhesive, Cyclic Compression-Stable, and Conductive Dual-Network Hydrogel Sensors for Human Health Monitoring. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03358] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qiangjun Ling
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Tao Ke
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Wentao Liu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Zhijun Ren
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Li Zhao
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Haibin Gu
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| |
Collapse
|
18
|
Niu S, Chang X, Zhu Z, Qin Z, Li J, Jiang Y, Wang D, Yang C, Gao Y, Sun S. Low-Temperature Wearable Strain Sensor Based on a Silver Nanowires/Graphene Composite with a Near-Zero Temperature Coefficient of Resistance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55307-55318. [PMID: 34762410 DOI: 10.1021/acsami.1c14671] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Currently, the exploration of wearable strain sensors that can work under subzero temperatures while simultaneously possessing anti-interference capability toward temperature is still a grand challenge. Herein, we present a low-temperature wearable strain sensor that is constructed via the incorporation of a Ag nanowires/graphene (Ag NWs/G) composite into the polydimethylsiloxane (PDMS) polymer. The Ag NWs/G/PDMS strain sensor exhibits promising flexibility at a very low temperature (-40 °C), outstanding fatigue resistance with low hysteresis energy, and near-zero temperature coefficient of resistance (TCR). The Ag NWs/G/PDMS strain sensor shows excellent sensing performance under subzero temperatures with a very high gauge factor of 9156 under a strain of >36%, accompanied by a noninterference characteristic to temperature (-40 to 20 °C). The Ag NWs/G/PDMS strain sensor also demonstrates the feasibility of monitoring various human movements such as finger bending, arm waving, wrist rotation, and knee bending under both room temperature and low-temperature conditions. This work initiates a new promising strategy to construct next-generation wearable strain sensors that can work stably and effectively under very low temperatures.
Collapse
Affiliation(s)
- Shicong Niu
- Institute of Marine Materials Science and Engineering, College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Xueting Chang
- Institute of Marine Materials Science and Engineering, College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Zhihao Zhu
- College of Logistics Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Zhiwei Qin
- College of Logistics Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Junfeng Li
- College of Logistics Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Yingchang Jiang
- Institute of Marine Materials Science and Engineering, College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Dongsheng Wang
- Institute of Marine Materials Science and Engineering, College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Chuanxiao Yang
- College of Logistics Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Yang Gao
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shibin Sun
- College of Logistics Engineering, Shanghai Maritime University, Shanghai 201306, China
| |
Collapse
|