1
|
Chen Q, Feng J, Xue Y, Huo S, Dinh T, Xu H, Shi Y, Gao J, Tang LC, Huang G, Lei W, Song P. An Engineered Heterostructured Trinity Enables Fire-Safe, Thermally Conductive Polymer Nanocomposite Films with Low Dielectric Loss. NANO-MICRO LETTERS 2025; 17:168. [PMID: 40009265 DOI: 10.1007/s40820-025-01681-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/24/2025] [Indexed: 02/27/2025]
Abstract
To adapt to the trend of increasing miniaturization and high integration of microelectronic equipments, there is a high demand for multifunctional thermally conductive (TC) polymeric films combining excellent flame retardancy and low dielectric constant (ε). To date, there have been few successes that achieve such a performance portfolio in polymer films due to their different and even mutually exclusive governing mechanisms. Herein, we propose a trinity strategy for creating a rationally engineered heterostructure nanoadditive (FG@CuP@ZTC) by in situ self-assembly immobilization of copper-phenyl phosphonate (CuP) and zinc-3, 5-diamino-1,2,4-triazole complex (ZTC) onto the fluorinated graphene (FG) surface. Benefiting from the synergistic effects of FG, CuP, and ZTC and the bionic lay-by-lay (LBL) strategy, the as-fabricated waterborne polyurethane (WPU) nanocomposite film with 30 wt% FG@CuP@ZTC exhibits a 55.6% improvement in limiting oxygen index (LOI), 66.0% and 40.5% reductions in peak heat release rate and total heat release, respectively, and 93.3% increase in tensile strength relative to pure WPU film due to the synergistic effects between FG, CuP, and ZTC. Moreover, the WPU nanocomposite film presents a high thermal conductivity (λ) of 12.7 W m-1 K-1 and a low ε of 2.92 at 106 Hz. This work provides a commercially viable rational design strategy to develop high-performance multifunctional polymer nanocomposite films, which hold great potential as advanced polymeric thermal dissipators for high-power-density microelectronics.
Collapse
Affiliation(s)
- Qiang Chen
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China
| | - Jiabing Feng
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Yijiao Xue
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), Nanjing, 210042, People's Republic of China
| | - Siqi Huo
- Centre for Future Materials, School of Engineering, University of Southern Queensland, Springfield, 4300, Australia
| | - Toan Dinh
- Centre for Future Materials, School of Engineering, University of Southern Queensland, Springfield, 4300, Australia
| | - Hang Xu
- Key Laboratory of Integrated Regulation and Resource Development On Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, People's Republic of China.
- Suzhou Research Institute, Hohai University, Suzhou, 215100, People's Republic of China.
| | - Yongqian Shi
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350116, People's Republic of China
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Long-Cheng Tang
- Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
| | - Guobo Huang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang, 318000, People's Republic of China.
| | - Weiwei Lei
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Pingan Song
- Centre for Future Materials, School of Agriculture and Environmental Science, University of Southern Queensland, Springfield, 4300, Australia.
| |
Collapse
|
2
|
Zhang X, Wu D, Zhou H, Xiang D, Sun H, Chen C, Li D, Wu Y, Fu Q, Deng H. A novel strategy to prepare high performance multifunctional composite films by combining electrostatic assembly, crosslinking, topology enhancement and sintering. MATERIALS HORIZONS 2024; 11:4190-4200. [PMID: 38912594 DOI: 10.1039/d4mh00539b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Currently, polymer-fiber composite films face the challenge of striking a balance between good mechanical properties and multi-functionalities. Here, aramid fibers (ANFs), chitosan (CS) dendritic particles, and silver nanowires (AgNWs) were used to create high-performance multifunctional composite films. AgNWs and polymer dendritic particles form an interpenetrating segregated network that ensures both a continuous conductive filler and a polymer network. Electrostatic assembly eliminates repulsion between negatively charged ANFs, cross-linked CS particles generate a stable three-dimensional network, and a "brick-mortar" structure composed of multiple materials contributes to topological enhancement. Sintering encourages local overlap and fusing of the AgNWs while reducing their internal flaws. Based on the above strategy, these films achieve a strength of 306.5 MPa, a toughness of 26.5 MJ m-3, and a conductivity of 392 S cm-1. Density functional theory (DFT) and Comsol simulations demonstrate that the introduction of CS thin layers leads to strong hydrogen bonds and three-dimensional continuous conductive networks. With its outstanding mechanical and electrical properties, the AgNW@ANF/CS-CH film demonstrates excellent electromagnetic shielding (22 879.1 dB cm2 g-1) and Joule heating (70 °C within 10 s) capabilities. This work presents a novel approach to fabricate high-performance conductive films and expand their potential applications in lightweight wearable electronics and electrothermal therapy.
Collapse
Affiliation(s)
- Xuezhong Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Die Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
- Institute for Mathematical and Computational Materials Science, Chengdu Advanced Metal Materials Industry Technology Research Institute Co., Ltd., Chengdu 610300, Sichuan, China
| | - Hongju Zhou
- Department of Nephrology, Kidney Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dong Xiang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Haoming Sun
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Chuanliang Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Dong Li
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Yuanpeng Wu
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Hua Deng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China.
| |
Collapse
|
3
|
Zhan Y, Zheng X, Nan B, Lu M, Shi J, Wu K. Flexible MXene/aramid nanofiber nanocomposite film with high thermal conductivity and flame retardancy. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
4
|
Zhao L, Wei C, Ren J, Li Y, Zheng J, Jia L, Wang Z, Jia S. Biomimetic Nacreous Composite Films toward Multipurpose Application Structured by Aramid Nanofibers and Edge-Hydroxylated Boron Nitride Nanosheets. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lihua Zhao
- College of Electrical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Chengmei Wei
- College of Electrical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Junwen Ren
- College of Electrical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Yuchao Li
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| | - Jiajia Zheng
- Laboratory of Theoretical and Computational Nanoscience, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Lichuan Jia
- College of Electrical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Zhong Wang
- College of Electrical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Shenli Jia
- College of Electrical Engineering, Sichuan University, Chengdu 610065, P. R. China
- State Key Laboratory of the Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| |
Collapse
|