1
|
Yuan Z, Sun X, Wang H, Zhao X, Jiang Z. Applications of Ni-Based Catalysts in Photothermal CO 2 Hydrogenation Reaction. Molecules 2024; 29:3882. [PMID: 39202961 PMCID: PMC11357118 DOI: 10.3390/molecules29163882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Heterogeneous CO2 hydrogenation catalytic reactions, as the strategies for CO2 emission reduction and green carbon resource recycling, play important roles in alleviating global warming and energy shortages. Among these strategies, photothermal CO2 hydrogenation technology has become one of the hot catalytic technologies by virtue of the synergistic advantages of thermal catalysis and photocatalysis. And it has attracted more and more researchers' attentions. Various kinds of effective photothermal catalysts have been gradually discovered, and nickel-based catalysts have been widely studied for their advantages of low cost, high catalytic activity, abundant reserves and thermal stability. In this review, the applications of nickel-based catalysts in photothermal CO2 hydrogenation are summarized. Finally, through a good understanding of the above applications, future modification strategies and design directions of nickel-based catalysts for improving their photothermal CO2 hydrogenation activities are proposed.
Collapse
Affiliation(s)
- Zhimin Yuan
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Xianhui Sun
- Food and Drug Department, Weifang Vocational College, Weifang 261061, China
| | - Haiquan Wang
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Xingling Zhao
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Zaiyong Jiang
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University, Weifang 261061, China
| |
Collapse
|
2
|
Lin S, Chen Y, Li H, Wang W, Wang Y, Wu M. Application of metal-organic frameworks and their derivates for thermal-catalytic C1 molecules conversion. iScience 2024; 27:109656. [PMID: 38650984 PMCID: PMC11033205 DOI: 10.1016/j.isci.2024.109656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
One-carbon (C1) catalysis refers to the conversion of compounds with a single carbon atom, especially carbon monoxide (CO), carbon dioxide (CO2), and methane (CH4), into clean fuels and valuable chemicals via catalytic strategy is crucial for sustainable and green development. Among various catalytic strategies, thermal-driven process seems to be one of the most promising pathways for C1 catalysis due to the high efficiency and practical application prospect. Notably, the rational design of thermal-driven C1 catalysts plays a vital role in boosting the targeted products synthesis of C1 catalysis, which relies heavily on the choice of ideal active site support, catalyst fabrication precursor, and catalytic reaction field. As a novel crystalline porous material, metal-organic frameworks (MOFs) has made significant progress in the design and synthesis of various functional nanomaterials. However, the application of MOFs in C1 catalysis faces numerous challenges, such as thermal stability, mechanical strength, yield of MOFs, and so on. To overcome these limitations and harness the advantages of MOFs in thermal-driven C1 catalysis, researchers have developed various catalyst/carrier preparation strategies. In this review, we provide a concise overview of the recent advancements in the conversion of CO, CO2, and CH4 into clean fuels and valuable chemicals via thermal-catalytic strategy using MOFs-based catalysts. Furthermore, we discuss the main challenges and opportunities associated with MOFs-based catalysts for thermal-driven C1 catalysis in the future.
Collapse
Affiliation(s)
- Shiyuan Lin
- College of New Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Yongjie Chen
- College of New Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Huayong Li
- College of New Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Wenhang Wang
- College of New Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Yang Wang
- College of New Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Mingbo Wu
- College of New Energy, College of Chemistry and Chemical Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
3
|
Cui Y, He S, Yang J, Gao R, Hu K, Chen X, Xu L, Deng C, Lin C, Peng S, Zhang C. Research Progress of Non-Noble Metal Catalysts for Carbon Dioxide Methanation. Molecules 2024; 29:374. [PMID: 38257287 PMCID: PMC10821115 DOI: 10.3390/molecules29020374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The extensive utilization of fossil fuels has led to a rapid increase in atmospheric CO2 concentration, resulting in various environmental issues. To reduce reliance on fossil fuels and mitigate CO2 emissions, it is important to explore alternative methods of utilizing CO2 and H2 as raw materials to obtain high-value-added chemicals or fuels. One such method is CO2 methanation, which converts CO2 and H2 into methane (CH4), a valuable fuel and raw material for other chemicals. However, CO2 methanation faces challenges in terms of kinetics and thermodynamics. The reaction rate, CO2 conversion, and CH4 yield need to be improved to make the process more efficient. To overcome these challenges, the development of suitable catalysts is essential. Non-noble metal catalysts have gained significant attention due to their high catalytic activity and relatively low cost. In this paper, the thermodynamics and kinetics of the CO2 methanation reaction are discussed. The focus is primarily on reviewing Ni-based, Co-based, and other commonly used catalysts such as Fe-based. The effects of catalyst supports, preparation methods, and promoters on the catalytic performance of the methanation reaction are highlighted. Additionally, the paper summarizes the impact of reaction conditions such as temperature, pressure, space velocity, and H2/CO2 ratio on the catalyst performance. The mechanism of CO2 methanation is also summarized to provide a comprehensive understanding of the process. The objective of this paper is to deepen the understanding of non-noble metal catalysts in CO2 methanation reactions and provide insights for improving catalyst performance. By addressing the limitations of CO2 methanation and exploring the factors influencing catalyst effectiveness, researchers can develop more efficient and cost-effective catalysts for this reaction.
Collapse
Affiliation(s)
- Yingchao Cui
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (Y.C.); (S.H.); (C.L.); (S.P.)
| | - Shunyu He
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (Y.C.); (S.H.); (C.L.); (S.P.)
| | - Jun Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; (J.Y.); (K.H.); (X.C.); (L.X.); (C.D.)
| | - Ruxing Gao
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (Y.C.); (S.H.); (C.L.); (S.P.)
| | - Kehao Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; (J.Y.); (K.H.); (X.C.); (L.X.); (C.D.)
| | - Xixi Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; (J.Y.); (K.H.); (X.C.); (L.X.); (C.D.)
| | - Lujing Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; (J.Y.); (K.H.); (X.C.); (L.X.); (C.D.)
| | - Chao Deng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; (J.Y.); (K.H.); (X.C.); (L.X.); (C.D.)
| | - Congji Lin
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (Y.C.); (S.H.); (C.L.); (S.P.)
| | - Shuai Peng
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (Y.C.); (S.H.); (C.L.); (S.P.)
| | - Chundong Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; (J.Y.); (K.H.); (X.C.); (L.X.); (C.D.)
| |
Collapse
|
4
|
McCarver GA, Yildirim T, Zhou W. Catalyst Engineering for the Selective Reduction of CO 2 to CH 4 : A First-Principles Study on X-MOF-74 (X=Mg, Mn, Fe, Co, Ni, Cu, Zn). Chemphyschem 2023:e202300645. [PMID: 37801605 DOI: 10.1002/cphc.202300645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/29/2023] [Accepted: 10/06/2023] [Indexed: 10/08/2023]
Abstract
The conversion of carbon dioxide (CO2 ) into more valuable chemical compounds represents a critical objective for addressing environmental challenges and advancing sustainable energy sources. The CO2 reduction reaction (CO2 RR) holds promise for transforming CO2 into versatile feedstock materials and fuels. Leveraging first-principles methodologies provides a robust approach to evaluate catalysts and steer experimental efforts. In this study, we examine the CO2 RR process using a diverse array of representative cluster models derived from X-MOF-74 (where X encompasses Mg, Mn, Fe, Co, Ni, Cu, or Zn) through first-principles methods. Notably, our investigation highlights the Fe-MOF-74 cluster's unique attributes, including favorable CO2 binding and the lowest limiting potential of the studied clusters for converting CO2 to methane (CH4 ) at 0.32 eV. Our analysis identified critical factors driving the selective CO2 RR pathway, enabling the formation CH4 on the Fe-MOF-74 cluster. These factors involve less favorable reduction of hydrogen to H2 and strong binding affinities between the Fe open-metal site and reduction intermediates, effectively curtailing desorption processes of closed-shell intermediates such as formic acid (HCOOH), formaldehyde (CH2 O), and methanol (CH3 OH), to lead to selective CH4 formation.
Collapse
Affiliation(s)
- Gavin A McCarver
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Taner Yildirim
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Wei Zhou
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
5
|
Guo S, Huang X, Situ Y, Huang Q, Guan K, Huang J, Wang W, Bai X, Liu Z, Wu Y, Qiao Z. Interpretable Machine-Learning and Big Data Mining to Predict Gas Diffusivity in Metal-Organic Frameworks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301461. [PMID: 37166040 PMCID: PMC10375163 DOI: 10.1002/advs.202301461] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/14/2023] [Indexed: 05/12/2023]
Abstract
For gas separation and catalysis by metal-organic frameworks (MOFs), gas diffusion has a substantial impact on the process' overall rate, so it is necessary to determine the molecular diffusion behavior within the MOFs. In this study, an interpretable machine learing (ML) model, light gradient boosting machine (LGBM), is trained to predict the molecular diffusivity and selectivity of 9 gases (Kr, Xe, CH4 , N2 , H2 S, O2 , CO2 , H2 , and He). For these 9 gases, LGBM displays high accuracy (average R2 = 0.962) and superior extrapolation for the diffusivity of C2 H6 . And this model calculation is five orders of magnitude faster than molecular dynamics (MD) simulations. Subsequently, using the trained LGBM model, an interactive desktop application is developed that can help researchers quickly and accurately calculate the diffusion of molecules in porous crystal materials. Finally, the authors find the difference in the molecular polarizability (ΔPol) is the key factor governing the diffusion selectivity by combining the trained LGBM model with the Shapley additive explanation (SHAP). By the calculation of interpretable ML, the optimal MOFs are selected for separating binary gas mixtures and CO2 methanation. This work provides a new direction for exploring the structure-property relationships of MOFs and realizing the rapid calculation of molecular diffusivity.
Collapse
Affiliation(s)
- Shuya Guo
- Guangzhou Key Laboratory for New Energy and Green CatalysisSchool of Chemistry and Chemical EngineeringGuangzhou UniversityGuangzhou510006China
| | - Xiaoshan Huang
- Guangzhou Key Laboratory for New Energy and Green CatalysisSchool of Chemistry and Chemical EngineeringGuangzhou UniversityGuangzhou510006China
| | - Yizhen Situ
- Guangzhou Key Laboratory for New Energy and Green CatalysisSchool of Chemistry and Chemical EngineeringGuangzhou UniversityGuangzhou510006China
| | - Qiuhong Huang
- Guangzhou Key Laboratory for New Energy and Green CatalysisSchool of Chemistry and Chemical EngineeringGuangzhou UniversityGuangzhou510006China
| | - Kexin Guan
- Guangzhou Key Laboratory for New Energy and Green CatalysisSchool of Chemistry and Chemical EngineeringGuangzhou UniversityGuangzhou510006China
| | - Jiaxin Huang
- Guangzhou Key Laboratory for New Energy and Green CatalysisSchool of Chemistry and Chemical EngineeringGuangzhou UniversityGuangzhou510006China
| | - Wei Wang
- Guangzhou Key Laboratory for New Energy and Green CatalysisSchool of Chemistry and Chemical EngineeringGuangzhou UniversityGuangzhou510006China
| | - Xiangning Bai
- Guangzhou Key Laboratory for New Energy and Green CatalysisSchool of Chemistry and Chemical EngineeringGuangzhou UniversityGuangzhou510006China
| | - Zili Liu
- Guangzhou Key Laboratory for New Energy and Green CatalysisSchool of Chemistry and Chemical EngineeringGuangzhou UniversityGuangzhou510006China
| | - Yufang Wu
- Guangzhou Key Laboratory for New Energy and Green CatalysisSchool of Chemistry and Chemical EngineeringGuangzhou UniversityGuangzhou510006China
| | - Zhiwei Qiao
- Guangzhou Key Laboratory for New Energy and Green CatalysisSchool of Chemistry and Chemical EngineeringGuangzhou UniversityGuangzhou510006China
- Joint Institute of Guangzhou University & Institute of Corrosion Science and TechnologyGuangzhou UniversityGuangzhou510006China
| |
Collapse
|
6
|
Petit T, Lounasvuori M, Chemin A, Bärmann P. Nanointerfaces: Concepts and Strategies for Optical and X-ray Spectroscopic Characterization. ACS PHYSICAL CHEMISTRY AU 2023; 3:263-278. [PMID: 37249937 PMCID: PMC10214513 DOI: 10.1021/acsphyschemau.2c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 05/31/2023]
Abstract
Interfaces at the nanoscale, also called nanointerfaces, play a fundamental role in physics and chemistry. Probing the chemical and electronic environment at nanointerfaces is essential in order to elucidate chemical processes relevant for applications in a variety of fields. Many spectroscopic techniques have been applied for this purpose, although some approaches are more appropriate than others depending on the type of the nanointerface and the physical properties of the different phases. In this Perspective, we introduce the major concepts to be considered when characterizing nanointerfaces. In particular, the interplay between the characteristic length of the nanointerfaces, and the probing and information depths of different spectroscopy techniques is discussed. Differences between nano- and bulk interfaces are explained and illustrated with chosen examples from optical and X-ray spectroscopies, focusing on solid-liquid nanointerfaces. We hope that this Perspective will help to prepare spectroscopic characterization of nanointerfaces and stimulate interest in the development of new spectroscopic techniques adapted to the nanointerfaces.
Collapse
|
7
|
Zurrer T, Lovell E, Han Z, Liang K, Scott J, Amal R. Bimetallic RuNi-decorated Mg-CUK-1 for oxygen-tolerant carbon dioxide capture and conversion to methane. NANOSCALE 2022; 14:15669-15678. [PMID: 36227160 DOI: 10.1039/d2nr03338k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The development of hybrid sorbent/catalysts for carbon capture and conversion to chemical fuels involves several material and engineering design considerations. Herein, a metal-organic framework (MOF), known as Mg-CUK-1, is loaded with Ru and Ni nanoparticles and assessed as a hybrid material for the sequential capture and conversion of carbon dioxide (CO2) to methane (CH4). Low nanocatalyst loadings led to enhanced overall performance by preserving more CO2 uptake within the Mg-CUK-1 sorbent. Low temperature CO2 desorption from Mg-CUK-1 facilitated complete CO2 release and subsequent conversion to CH4. The influence of oxygen exposure on catalyst performance was assessed, with Ru-loaded Mg-CUK-1 exhibiting oxygen tolerance through sustained CH4 generation of 1.40 mmol g-1 over ten cycles. In contrast, Ni-loaded Mg-CUK-1 was unable to retain initial catalytic performance, reflected in an 11.4% decrease in CH4 generation over ten cycles. When combined, 0.3Ru2.7Ni Mg-CUK-1 yielded comparable overall performance to 3Ru Mg-CUK-1, indicating that Ru aids the re-reduction of NiO to Ni after O2 exposure. By combining multiple catalyst species within one hybrid sorbent/catalyst material, greater catalyst stability is achieved, resulting in sustained overall performance. The introduced strategy provides an approach for fostering resilient hydrogenation catalysts upon exposure to reactive species often found in real-world point source CO2 emissions.
Collapse
Affiliation(s)
- Timothy Zurrer
- School of Chemical Engineering, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Emma Lovell
- School of Chemical Engineering, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Zhaojun Han
- School of Chemical Engineering, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
- CSIRO Manufacturing, 36 Bradfield Road, Lindfield, NSW 2070, Australia
| | - Kang Liang
- School of Chemical Engineering, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
- Graduate School of Biomedical Engineering, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Jason Scott
- School of Chemical Engineering, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Rose Amal
- School of Chemical Engineering, The University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| |
Collapse
|
8
|
Fan WK, Tahir M. Structured clay minerals-based nanomaterials for sustainable photo/thermal carbon dioxide conversion to cleaner fuels: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157206. [PMID: 35810906 DOI: 10.1016/j.scitotenv.2022.157206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
In efforts to achieve a sustainable development goal, the utilization of CO2 to generate renewable fuels is promising, as it is a sustainable technology that provides affordable and clean energy. To realize the production of renewable green fuels, a proficient and low-cost technology is required. Using photo/thermal catalytic process, the goal of sustainable CO2 hydrogenation can be achieved. There have been several types of catalysts under exploration, however, they are expensive with limited availability. In the current development, green materials such as mineral clays are emerging as cocatalyst/supports for CO2 hydrogenation. Clays are bestowed with various beneficial properties such as a large surface area, high porosity, abundant basic sites, excellent thermal stability and chemical corrosion resistance. Clays are promising materials that can drastically reduce the cost in catalyst preparation, partially fulfil the energy demand and reduce greenhouse gas emission. This review aims to focus on the various types of clays and their applications in the field of photo/thermal CO2 hydrogenation to renewable fuels. Firstly, the classifications of clays are provided, whereby they can be differentiated based on their silicate layers, namely 1:1 and 2:1 type clay and their properties are thoroughly discussed to provide advantages and applications. The applications of various clays such as kaolinite, halloysite, montmorillonite, attapulgite, saponite and volkonskoite for CO2 hydrogenation reactions are systematically discoursed. In addition, various approaches to improve the capability of raw clays as catalyst support are critically discussed, which include thermal treatment, exfoliation, acid-leaching and pillaring approaches. A critical discussion regarding the engineering aspects to further enhance clay-based catalyst for CO2 hydrogenation are further disclosed. In short, clays are freely available materials that can be found in abundance. However, there are many more different types of natural green clays that have not been studied and explored in various energy applications.
Collapse
Affiliation(s)
- Wei Keen Fan
- School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Muhammad Tahir
- Chemical and Petroleum Engineering Department, UAE University, P.O. Box 15551, Al Ain, United Arab Emirates.
| |
Collapse
|
9
|
Fan WK, Sherryna A, Tahir M. Advances in Titanium Carbide (Ti 3C 2T x ) MXenes and Their Metal-Organic Framework (MOF)-Based Nanotextures for Solar Energy Applications: A Review. ACS OMEGA 2022; 7:38158-38192. [PMID: 36340125 PMCID: PMC9631731 DOI: 10.1021/acsomega.2c05030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Introducing new materials with low cost and superior solar harvesting efficiency requires urgent attention to solve energy and environmental challenges. Titanium carbide (Ti3C2T x ) MXene, a 2D layered material, is a promising solution to solve the issues of existing materials due to their promising conductivity with low cost to function as a cocatalyst/support. On the other hand, metal-organic frameworks (MOFs) are emerging materials due to their high surface area and semiconducting characteristics. Therefore, coupling them would be promising to form composites with higher solar harvesting efficiency. Thus, the main objective of this work to disclose recent development in Ti3C2T x -based MOF nanocomposites for energy conversion applications to produce renewable fuels. MOFs can generate photoinduced electron/hole pairs, followed by transfer of electrons to MXenes through Schottky junctions for photoredox reactions. Currently, the principles, fundamentals, and mechanism of photocatalytic systems with construction of Schottky junctions are critically discussed. Then the basics of MOFs are discussed thoroughly in terms of their physical properties, morphologies, optical properties, and derivatives. The synthesis of Ti3C2T x MXenes and their composites with the formation of surface functionals is systematically illustrated. Next, critical discussions are conducted on design considerations and strategies to engineer the morphology of Ti3C2T x MXenes and MOFs. The interfacial/heterojunction modification strategies of Ti3C2T x MXenes and MOFs are then deeply discussed to understand the roles of both materials. Following that, the applications of MXene-mediated MOF nanotextures in view of CO2 reduction and water splitting for solar fuel production are critically analyzed. Finally, the challenges and a perspective toward the future research of MXene-based MOF composites are disclosed.
Collapse
Affiliation(s)
- Wei Keen Fan
- School
of Chemical and Energy Engineering, Universiti
Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Areen Sherryna
- School
of Chemical and Energy Engineering, Universiti
Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Muhammad Tahir
- Chemical
and Petroleum Engineering Department, UAE
University, P.O. Box 15551, Al Ain, United Arab Emirates
| |
Collapse
|
10
|
Luo X, Abazari R, Tahir M, Fan WK, Kumar A, Kalhorizadeh T, Kirillov AM, Amani-Ghadim AR, Chen J, Zhou Y. Trimetallic metal–organic frameworks and derived materials for environmental remediation and electrochemical energy storage and conversion. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214505] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Abdelhamid HN. Removal of Carbon Dioxide using Zeolitic Imidazolate Frameworks: Adsorption and Conversion via Catalysis. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory, Department of Chemistry Assiut University Assiut Egypt
- Proteomics Laboratory for Clinical Research and Materials Science, Department of Chemistry Assiut University Assiut Egypt
- Nanotechnology Research Centre (NTRC) The British University in Egypt Cairo Egypt
| |
Collapse
|
12
|
Wang J, Li Y, Zhao J, Xiong Z, Zhao Y, Zhang J. PtCu alloy cocatalysts for efficient photocatalytic CO 2 reduction into CH 4 with 100% selectivity. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00048b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In this paper, PtCu alloys with varying Pt/Cu ratios were deposited onto TiO2 nanocrystals to selectively photoreduce CO2 into CH4.
Collapse
Affiliation(s)
- Junyi Wang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Youzi Li
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiangting Zhao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhuo Xiong
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yongchun Zhao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Junying Zhang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
13
|
Biliškov N. Infrared spectroscopic monitoring of solid-state processes. Phys Chem Chem Phys 2022; 24:19073-19120. [DOI: 10.1039/d2cp01458k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We put a spotlight on IR spectroscopic investigations in materials science by providing a critical insight into the state of the art, covering both fundamental aspects, examples of its utilisation, and current challenges and perspectives focusing on the solid state.
Collapse
Affiliation(s)
- Nikola Biliškov
- Rudjer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC, H3A 0B8, Canada
| |
Collapse
|