1
|
Muroga J, Kamio E, Matsuoka A, Nakagawa K, Yoshioka T, Matsuyama H. Development of an ion gel-based CO 2 separation membrane composed of Pebax 1657 and a CO 2-philic ionic liquid. RSC Adv 2024; 14:20786-20796. [PMID: 38952929 PMCID: PMC11215809 DOI: 10.1039/d3ra08730a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
A tough ion gel membrane containing a CO2-philic ionic liquid, 1-ethyl-3-methylimidazolium tricyanomethanide ([Emim][C(CN)3]), was developed, and its CO2 permeation properties were evaluated under humid conditions at elevated temperatures. Pebax 1657, which is a diblock copolymer composed of a polyamide block and a polyethylene oxide block, was used as the gel network of the ion gel membrane to prepare a tough ion gel with good ionic liquid-holding properties. The polyamide block formed a semicrystalline structure in [Emim][C(CN)3] to toughen the ion gel membrane via an energy dissipation mechanism. The polyethylene oxide block exhibited good compatibility with [Emim][C(CN)3] and contributed to the retention of the ionic liquid in the ion gel. The developed ion gel membrane showed a good CO2 separation performance of 1677 barrer CO2 permeability and 37 CO2/N2 permselectivity under humid conditions of 75% relative humidity at an elevated temperature of 50 °C, which corresponds to an exhaust gas from a coal-fired power plant.
Collapse
Affiliation(s)
- Jo Muroga
- Research Center for Membrane and Film Technology, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
- Department of Chemical Science and Engineering, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
| | - Eiji Kamio
- Research Center for Membrane and Film Technology, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
- Department of Chemical Science and Engineering, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
| | - Atsushi Matsuoka
- Research Center for Membrane and Film Technology, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
- Department of Chemical Science and Engineering, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
| | - Keizo Nakagawa
- Research Center for Membrane and Film Technology, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
- Graduate School of Science, Technology and Innovation, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
| | - Tomohisa Yoshioka
- Research Center for Membrane and Film Technology, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
- Graduate School of Science, Technology and Innovation, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
- Department of Chemical Science and Engineering, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
| |
Collapse
|
2
|
Fundamental investigation on the development of composite membrane with a thin ion gel layer for CO2 separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
3
|
Lee YY, Wickramasinghe NP, Dikki R, Jan DL, Gurkan B. Facilitated transport membrane with functionalized ionic liquid carriers for CO 2/N 2, CO 2/O 2, and CO 2/air separations. NANOSCALE 2022; 14:12638-12650. [PMID: 36040354 DOI: 10.1039/d2nr03214g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
CO2 separations from cabin air and the atmospheric air are challenged by the very low partial pressures of CO2. In this study, a facilitated transport membrane (FTM) is developed to separate CO2 from air using functionalized ionic liquid (IL) and poly(ionic liquid) (PIL) carriers. A highly permeable bicontinuous structured poly(ethersulfone)/poly(ethylene terephthalate) (bPES/PET) substrate is used to support the PIL-IL impregnated graphene oxide thin film. The CO2 separation performance was tested under a mixture feed of CO2/N2/O2/H2O. Under 410 ppm of CO2 at 1 atm feed gas, CO2 permanence of 3923 GPU, and CO2/N2 and CO2/O2 selectivities of 1200 and 300, respectively, are achieved with helium sweeping on the permeate side. For increased transmembrane pressure (>0 atm), a thicker PIL-IL/GO layer was shown to provide mechanical strength and prevent leaching of the mobile carrier. CO2 binding to the carriers, ion diffusivities, and the glass transition temperature of the PIL-IL gels were examined to determine the membrane composition and rationalize the superior separation performance obtained. This report represents the first FTM study with PIL-IL carriers for CO2 separation from air.
Collapse
Affiliation(s)
- Yun-Yang Lee
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Nalinda P Wickramasinghe
- Northeast Ohio High Field NMR Facility, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Ruth Dikki
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Darrell L Jan
- Ames Research Center, National Aeronautics and Space Administration, Moffett Field, CA 94043, USA.
| | - Burcu Gurkan
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
4
|
Zhang J, Kamio E, Matsuoka A, Nakagawa K, Yoshioka T, Matsuyama H. Novel Tough Ion-Gel-Based CO 2 Separation Membrane with Interpenetrating Polymer Network Composed of Semicrystalline and Cross-Linkable Polymers. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jinhui Zhang
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Eiji Kamio
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Center for Environmental Management, Kobe University, 1−1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Atsushi Matsuoka
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Keizo Nakagawa
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Tomohisa Yoshioka
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
5
|
Nabais AR, Francisco RO, Alves VD, Neves LA, Tomé LC. Poly(ethylene glycol) Diacrylate Iongel Membranes Reinforced with Nanoclays for CO 2 Separation. MEMBRANES 2021; 11:998. [PMID: 34940499 PMCID: PMC8703618 DOI: 10.3390/membranes11120998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022]
Abstract
Despite the fact that iongels are very attractive materials for gas separation membranes, they often show mechanical stability issues mainly due to the high ionic liquid (IL) content (≥60 wt%) needed to achieve high gas separation performances. This work investigates a strategy to improve the mechanical properties of iongel membranes, which consists in the incorporation of montmorillonite (MMT) nanoclay, from 0.2 to 7.5 wt%, into a cross-linked poly(ethylene glycol) diacrylate (PEGDA) network containing 60 wt% of the IL 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][TFSI]). The iongels were prepared by a simple one-pot method using ultraviolet (UV) initiated polymerization of poly(ethylene glycol) diacrylate (PEGDA) and characterized by several techniques to assess their physico-chemical properties. The thermal stability of the iongels was influenced by the addition of higher MMT contents (>5 wt%). It was possible to improve both puncture strength and elongation at break with MMT contents up to 1 wt%. Furthermore, the highest ideal gas selectivities were achieved for iongels containing 0.5 wt% MMT, while the highest CO2 permeability was observed at 7.5 wt% MMT content, due to an increase in diffusivity. Remarkably, this strategy allowed for the preparation and gas permeation of self-standing iongel containing 80 wt% IL, which had not been possible up until now.
Collapse
Affiliation(s)
- Ana R. Nabais
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.R.N.); (R.O.F.)
| | - Rute O. Francisco
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.R.N.); (R.O.F.)
| | - Vítor D. Alves
- LEAF—Linking Landscape, Environment, Agriculture and Food—Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisabon, Portugal;
| | - Luísa A. Neves
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.R.N.); (R.O.F.)
| | - Liliana C. Tomé
- LAQV-REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (A.R.N.); (R.O.F.)
| |
Collapse
|