1
|
He D, Cao D, You Y, Ben C, Wu S, Wu Q, Liu D, Song XM, Song Z, Meng QB. Mesoporous Silica Supported Hydrophilic Ionic Liquid Gel Microspheres for Solvent-Free Deep Oxidative Desulfurization. NANO LETTERS 2024; 24:13607-13614. [PMID: 39432100 DOI: 10.1021/acs.nanolett.4c03345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Solvent-free oxidative desulfurization can avoid environmental pollution caused by organic solvents as well as prevent loss of fuel during the oil-water separation process. In this work, first, hydrophilic ionic liquid gel microspheres with [BMIM]BF4 and PHEMA as the dispersion medium and gel network, respectively, were successfully prepared by using mesoporous silica microspheres as a supporting skeleton capable of stabilizing the gel through an anchoring effect, and then the catalyst [BMIM]PW and oxidant H2O2 were incorporated into the gel microspheres to construct a liquid compartment microreactor for deep desulfurization. The prepared microreactor (SiO2@[BMIM]PW/ILG-microspheres) has excellent extraction-catalytic capacity and exhibited ∼100% desulfurization ratio for a model oil of n-heptane with 500 ppm of DBT at 60 °C for 3 h without solvents. Additionally, the prepared microreactor can absorb hydrophilic desulfurization products after the reaction and has advantages of reusability and simple recovery without polluting the fuel oil, which is beneficial for potential petroleum industrial application.
Collapse
Affiliation(s)
- Dongqing He
- Liaoning Key Lab for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Dezhou Cao
- Liaoning Key Lab for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, Guangdong, China
| | - Yuanxiang You
- Liaoning Key Lab for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Chuxuan Ben
- Liaoning Key Lab for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Shuyao Wu
- Liaoning Key Lab for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Qiong Wu
- Liaoning Key Lab for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Daliang Liu
- Liaoning Key Lab for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Xi-Ming Song
- Liaoning Key Lab for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Zhining Song
- Liaoning Key Lab for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Qing Bo Meng
- Liaoning Key Lab for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, Shenyang 110036, China
| |
Collapse
|
2
|
Hassani H, Khosravi M, Hakimi M. Synthesis of Aldehydes and Ketones via Oxidation of Alcohols with Hydrogen Peroxide in Aqueous Acetonitrile in the Presence of Potassium Heptamolybdate Tetrahydrate Catalyst. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022120181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
3
|
Kundu S, Mitra D. Studies on Adsorption Isotherm and Adsorption Kinetics to Predict the Behavior of an Ionic Liquid Based Adsorbent in Desulfurization of Model Diesel. RUSS J APPL CHEM+ 2022. [DOI: 10.1134/s1070427222080171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
4
|
Wu P, Liu P, Chen L, Ma W, Zhu L, Liu M, He J, Lu L, Chao Y, Zhu W. Synergistic Effect of Au–Cu Alloy Nanoparticles on TiO 2 for Efficient Aerobic Catalytic Oxidative Desulfurization. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Peiwen Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Penghui Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Linlin Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wenhui Ma
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Linhua Zhu
- College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Mingyang Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jing He
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Linjie Lu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yanhong Chao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wenshuai Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
5
|
Akopyan AV, Mnatsakanyan RA, Eseva EA, Davtyan DA, Polikarpova PD, Lukashov MO, Levin IS, Cherednichenko KA, Anisimov AV, Terzyan AM, Agoyan AM, Karakhanov EA. New Type of Catalyst for Efficient Aerobic Oxidative Desulfurization Based On Tungsten Carbide Synthesized by the Microwave Method. ACS OMEGA 2022; 7:11788-11798. [PMID: 35449937 PMCID: PMC9016829 DOI: 10.1021/acsomega.1c06969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Herein, we present a new type of high-performance catalyst for aerobic oxidation of organosulfur compounds based on tungsten carbide. The synthesis of tungsten carbide was performed via microwave irradiation of the precursors, which makes it possible to obtain a catalyst in just 15 min. The synthesized catalyst was investigated by a variety of physicochemical methods: X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, electron microscopy, and N2 adsorption/desorption. It was shown that active centers containing tungsten in the transition oxidation state (+4) play a key role in the activation of oxygen. The main factors influencing the conversion of dibenzothiophene (DBT) were investigated. It should be noted that 100% conversion of DBT can be achieved under relatively mild conditions: 120 °C, 3 h, 6 bar, and 0.5% wt catalyst. The catalyst retained its activity for at least six oxidation/regeneration cycles. The simplicity and speed of synthesis of the proposed catalyst in combination with its high activity and stability open broad prospects for its further use both for oxidative desulfurization and for other reactions of aerobic oxidation of organic substrates.
Collapse
Affiliation(s)
- Argam V. Akopyan
- Chemistry
Department, Lomonosov Moscow State University, Leninskie gory, 1/3, Moscow 119234, Russia
| | - Raman A. Mnatsakanyan
- A.
B. Nalbandyan Institute of Chemical Physics National Academy of Sciences
of Armenia, Yerevan 0014, Armenia
| | - Ekaterina A. Eseva
- Chemistry
Department, Lomonosov Moscow State University, Leninskie gory, 1/3, Moscow 119234, Russia
| | - David A. Davtyan
- A.
B. Nalbandyan Institute of Chemical Physics National Academy of Sciences
of Armenia, Yerevan 0014, Armenia
| | - Polina D. Polikarpova
- Chemistry
Department, Lomonosov Moscow State University, Leninskie gory, 1/3, Moscow 119234, Russia
| | - Maxim O. Lukashov
- Chemistry
Department, Lomonosov Moscow State University, Leninskie gory, 1/3, Moscow 119234, Russia
| | - Ivan S. Levin
- A.
V. Topchiev Institute of Petrochemical Synthesis, 29 Leninsky prospect, 119991 Moscow, Russia
| | - Kirill A. Cherednichenko
- Department
of Physical and Colloid Chemistry, Gubkin
University, Leninskiy
prospect, 65-1, Moscow 119991, Russia
| | - Alexander V. Anisimov
- Chemistry
Department, Lomonosov Moscow State University, Leninskie gory, 1/3, Moscow 119234, Russia
| | - Anna M. Terzyan
- A.
B. Nalbandyan Institute of Chemical Physics National Academy of Sciences
of Armenia, Yerevan 0014, Armenia
| | - Artur M. Agoyan
- A.
B. Nalbandyan Institute of Chemical Physics National Academy of Sciences
of Armenia, Yerevan 0014, Armenia
| | - Eduard A. Karakhanov
- Chemistry
Department, Lomonosov Moscow State University, Leninskie gory, 1/3, Moscow 119234, Russia
| |
Collapse
|
6
|
A Short Review of Aerobic Oxidative Desulfurization of Liquid Fuels over Porous Materials. Catalysts 2022. [DOI: 10.3390/catal12020129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Oxidative desulfurization (ODS) has attracted much attention owing to the mild working conditions and effective removal of the aromatic sulfur-containing compounds which are difficult to desulfurize using the industrial hydrodesulfurization (HDS) technique. Molecular oxygen in ambient air have been recognized as an ideal oxidant in ODS due to its easy availability, non-toxicity and low cost in recent years. However, molecular oxygen activation under mild operating conditions is still a challenge. Porous materials and their composites have drawn increasing attention due to their advantages, such as high surface area and confined pore space, along with their stability. These merits contribute to the fast diffusion of oxygen molecules and the formation of more exposed active sites, which make them ideal catalysts for aerobic oxidation reactions. The confined space pore size offers a means of catalytic activity and durability improvement. This gives rise to copious attention toward the porous catalysts in AODS. In this review, the progress in the characteristics and AODS catalytic activities of porous catalysts is summarized. Then, emphasis on the molecular oxygen activation mechanism is traced. Finally, the breakthroughs and challenges of various categories of porous catalysts are concluded.
Collapse
|
7
|
Xu X, Zhang Y, Ying J, Jin L, Tian A, Wang X. POM-based compounds modified by mono- and bis-triazole derivatives: photocatalytic, electrochemical, and supercapacitor properties. CrystEngComm 2022. [DOI: 10.1039/d1ce01596f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Using triazole derivatives 5 POM-based compounds with electrocatalytic and capacitive properties were obtained under hydrothermal conditions. The compounds have good photocatalytic activity for the degradation of organic dyes and the reduction of Cr(vi).
Collapse
Affiliation(s)
- Xi Xu
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Yanping Zhang
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Jun Ying
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Liang Jin
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Aixiang Tian
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Xiuli Wang
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| |
Collapse
|