1
|
Hurlock MJ, Christian MS, Small LJ, Percival SJ, Rademacher DX, Schindelholz ME, Nenoff TM. Exceptional Electrical Detection of Trace NO 2 via Mixed Metal MOF-on-MOF Film-Based Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63818-63830. [PMID: 39504256 DOI: 10.1021/acsami.4c15743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
The tunability of metal-organic frameworks (MOFs) makes them exceptional materials for the development of highly selective, low-power sensors for toxic gas detection. Herein, we demonstrate enhanced detection of NO2 gas by a MOF-based electrical impedance sensor made using a unique mixed metal MOF-on-MOF synthesis. A combined experimental and computational study was performed using the exemplar NixMg1-x-MOF-74 to understand the fundamental structure-property relationships behind metal mixing and MOF film synthesis methods on sensor performance. Density functional theory results indicated that the presence of Ni in Mg-MOF-74 increased framework stability and increased the electron density of states at lower energies near the HOMO, as well as enhanced the NO2-Mg adsorption interaction. Impedance data of the NixMg1-x-MOF-74 films with larger Ni contents showed greater impedance change after exposure to 1 ppm of NO2 gas. Furthermore, when synthesized through either a drop-cast or direct solvothermal film growth approach, the monometallic Ni-based sensors had the best performance. However, the mixed metal NixMg1-x-MOF-74 sensors synthesized through a MOF-on-MOF approach resulted in the highest impedance change, outperforming all monometallic Ni-based sensors. In particular, the mixed metal Ni-on-Mg-MOF-74 film was the best-performing sensor with an impedance change of 309 upon trace NO2 exposure. Change in impedance response after NO2 exposure was improved by 52% compared to the best monometallic Ni-on-Ni-MOF-74 sensor. Structural analysis of the Ni-on-Mg film showed that the first Mg-MOF-74 layer acts as a structural template controlling the structural features of the final film after metal exchange with Ni. This led to improved film quality, evidenced by the greater crystallinity and larger MOF grain sizes, and resulted in enhanced sensor performance which was not achievable through other metal mixing methods. Altogether, this study identifies structure-property relationships and synthetic templating methods that inform MOF-based sensor design, allowing for improved detection of toxic compounds.
Collapse
Affiliation(s)
- Matthew J Hurlock
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | | | - Leo J Small
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Stephen J Percival
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - David X Rademacher
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | | | - Tina M Nenoff
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
2
|
Humayun M, Bououdina M, Usman M, Khan A, Luo W, Wang C. Designing State-of-the-Art Gas Sensors: From Fundamentals to Applications. CHEM REC 2024; 24:e202300350. [PMID: 38355899 DOI: 10.1002/tcr.202300350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/23/2023] [Indexed: 02/16/2024]
Abstract
Gas sensors are crucial in environmental monitoring, industrial safety, and medical diagnostics. Due to the rising demand for precise and reliable gas detection, there is a rising demand for cutting-edge gas sensors that possess exceptional sensitivity, selectivity, and stability. Due to their tunable electrical properties, high-density surface-active sites, and significant surface-to-volume ratio, nanomaterials have been extensively investigated in this regard. The traditional gas sensors utilize homogeneous material for sensing where the adsorbed surface oxygen species play a vital role in their sensing activity. However, their performance for selective gas sensing is still unsatisfactory because the employed high temperature leads to the poor stability. The heterostructures nanomaterials can easily tune sensing performance and their different energy band structures, work functions, charge carrier concentration and polarity, and interfacial band alignments can be precisely designed for high-performance selective gas sensing at low temperature. In this review article, we discuss in detail the fundamentals of semiconductor gas sensing along with their mechanisms. Further, we highlight the existed challenges in semiconductor gas sensing. In addition, we review the recent advancements in semiconductor gas sensor design for applications from different perspective. Finally, the conclusion and future perspectives for improvement of the gas sensing performance are discussed.
Collapse
Affiliation(s)
- Muhammad Humayun
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| | - Mohamed Bououdina
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| | - Muhammad Usman
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Abbas Khan
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
- Department of Chemistry, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Wei Luo
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Chundong Wang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| |
Collapse
|
3
|
Small LJ, Vornholt SM, Percival SJ, Meyerson ML, Schindelholz ME, Chapman KW, Nenoff TM. Impedance-Based Detection of NO 2 Using Ni-MOF-74: Influence of Competitive Gas Adsorption. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37675-37686. [PMID: 37498628 DOI: 10.1021/acsami.3c06864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Chemically robust, low-power sensors are needed for the direct electrical detection of toxic gases. Metal-organic frameworks (MOFs) offer exceptional chemical and structural tunability to meet this challenge, though further understanding is needed regarding how coadsorbed gases influence or interfere with the electrical response. To probe the influence of competitive gases on trace NO2 detection in a simulated flue gas stream, a combined structure-property study integrating synchrotron powder diffraction and pair distribution function analyses was undertaken, to elucidate how structural changes associated with gas binding inside Ni-MOF-74 pores correlate with the electrical response from Ni-MOF-74-based sensors. Data were evaluated for 16 gas combinations of N2, NO2, SO2, CO2, and H2O at 50 °C. Fourier difference maps from a rigid-body Rietveld analysis showed that additional electron density localized around the Ni-MOF-74 lattice correlated with large decreases in Ni-MOF-74 film resistance of up to a factor of 6 × 103, observed only when NO2 was present. These changes in resistance were significantly amplified by the presence of competing gases, except for CO2. Without NO2, H2O rapidly (<120 s) produced small (1-3×) decreases in resistance, though this effect could be differentiated from the slower adsorption of NO2 by the evaluation of the MOF's capacitance. Furthermore, samples exposed to H2O displayed a significant shift in lattice parameters toward a larger lattice and more diffuse charge density in the MOF pore. Evaluating the Ni-MOF-74 impedance in real time, NO2 adsorption was associated with two electrically distinct processes, the faster of which was inhibited by competitive adsorption of CO2. Together, this work points to the unique interaction of NO2 and other specific gases (e.g., H2O, SO2) with the MOF's surface, leading to orders of magnitude decrease in MOF resistance and enhanced NO2 detection. Understanding and leveraging these coadsorbed gases will further improve the gas detection properties of MOF materials.
Collapse
Affiliation(s)
- Leo J Small
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Simon M Vornholt
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Stephen J Percival
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Melissa L Meyerson
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | | | - Karena W Chapman
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Tina M Nenoff
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
4
|
Percival SJ, Small LJ, Bachman WB, Schindelholz ME, Nenoff TM. Long-Term Durability and Cycling of Nanoporous Materials Based Impedance NO 2 Sensors. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Stephen J. Percival
- Electronic, Optical and Nano Materials Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Leo J. Small
- Nanoscale Sciences Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - William B. Bachman
- Electronic, Optical and Nano Materials Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Mara E. Schindelholz
- Virtual Technologies and Engineering Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Tina M. Nenoff
- Physical, Chemical and Nano Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|