1
|
Ganesan A, Metz PC, Thyagarajan R, Chang Y, Purdy SC, Jayachandrababu KC, Page K, Sholl DS, Nair S. Structural and Adsorption Properties of ZIF-8-7 Hybrid Materials Synthesized by Acid Gas-Assisted and De Novo Routes. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:23956-23965. [PMID: 38115817 PMCID: PMC10726363 DOI: 10.1021/acs.jpcc.3c06334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 12/21/2023]
Abstract
The tuning of micropore environments in zeolitic imidazolate frameworks (ZIFs) by mixed-linker synthesis has the potential for enabling new molecular separation properties. However, de novo synthesis of mixed-linker (hybrid) ZIFs is often challenging due to the disparate chemical properties of the different linkers. Here, we elucidate the structure and properties of an unconventional ZIF-8-7 hybrid material synthesized via a controlled-acid-gas-assisted degradation and reconstruction (solvent-assisted crystal redemption, SACRed) strategy. Selective insertion of benzimidazole (ZIF-7 linker) into ZIF-8 using SACRed is used as a facile method to generate a ZIF-8-7 hybrid material that is otherwise difficult to synthesize by de novo methods. Detailed crystal structure and textural characterizations clarify the significant differences in the microstructure of the SACRed-derived ZIF-8-7 hybrid material relative to a de novo synthesized hybrid of the same overall linker composition as well as the parent ZIF-8 material. Unary and binary adsorption measurements reveal the tunability of adsorption characteristics as well as the prevalence of nonideal cooperative mixture adsorption effects that lead to large deviations from predictions made with ideal adsorbed solution theory.
Collapse
Affiliation(s)
- Arvind Ganesan
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Peter C. Metz
- Materials
Science and Engineering Department, University
of Tennessee, Knoxville, Tennessee 37996, United States
| | - Raghuram Thyagarajan
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yuchen Chang
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Stephen C. Purdy
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Krishna C. Jayachandrababu
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Katharine Page
- Materials
Science and Engineering Department, University
of Tennessee, Knoxville, Tennessee 37996, United States
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37830, United States
| | - David S. Sholl
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Oak
Ridge National Laboratory, Oak
Ridge, Tennessee 37830, United States
| | - Sankar Nair
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Chiang Y, Fu Q, Liang W, Ganesan A, Nair S. Recovery of 2,3-Butanediol from Fermentation Broth by Zeolitic Imidazolate Frameworks. Ind Eng Chem Res 2023; 62:16939-16944. [PMID: 37869420 PMCID: PMC10588442 DOI: 10.1021/acs.iecr.3c01925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/24/2023]
Abstract
The efficient separation of the 2,3-butanediol (2,3-BDO) intermediate from fermentation broth is an important issue in the production of biofuels from biomass-derived intermediates. Two zeolitic imidazolate frameworks ZIF-8 and ZIF-71 were investigated for the adsorption of 2,3-butanediol (2,3-BDO) from fermentation broth via liquid breakthrough adsorption measurements. While both ZIF materials initially show high separation performance, ZIF-71 retains robust separation performance even after aging in ethanol for two years, whereas the capacity of ZIF-8 decreases significantly. The robustness and stability of ZIF-71 are further confirmed with cyclic fixed bed adsorption measurements. The uptake of 2,3-BDO on ZIF-71 reaches >100 g/kg with negligible uptakes of sugars, organic acids, and other alcohols present in the fermentation broth. Excellent selectivity toward 2,3-BDO over water is also achieved. The 2,3-BDO-loaded ZIF-71 can be regenerated efficiently with ethanol as desorbent. These findings indicate that ZIF-71 shows considerable promise as an adsorbent to recover and purify diols from fermentation broths.
Collapse
Affiliation(s)
- Yadong Chiang
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Qiang Fu
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Wanwen Liang
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
- School
of Chemistry and Chemical Engineering, South
China University of Technology, Tianhe District Wushan Road Number 381, Guangzhou, 510640, China
| | - Arvind Ganesan
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| | - Sankar Nair
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332-0100, United States
| |
Collapse
|
3
|
Ganesan A, Leisen J, Thyagarajan R, Sholl DS, Nair S. Hierarchical ZIF-8 Materials via Acid Gas-Induced Defect Sites: Synthesis, Characterization, and Functional Properties. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40623-40632. [PMID: 37595023 PMCID: PMC10472435 DOI: 10.1021/acsami.3c08344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/07/2023] [Indexed: 08/20/2023]
Abstract
Microporous metal-organic frameworks (MOFs) have been widely studied for molecular separation and catalysis. The uniform micropores of MOFs (<2 nm) can introduce diffusion limitations and render the interiors of the crystal inaccessible to target molecules. The introduction of hierarchical porosity (interconnected micro and mesopores) can enhance intra-crystalline diffusion while maintaining the separation/catalytic selectivity. Conventional hierarchical MOF synthesis involves complex strategies such as elongated linkers, soft templating, and sacrificial templates. Here, we demonstrate a more general approach using our controlled acid gas-enabled degradation and reconstruction (Solvent-Assisted Crystal Redemption) strategy. Selective linker labilization of ZIF-8 is shown to generate a hierarchical pore structure with mesoporous cages (∼50 nm) while maintaining microporosity. Detailed structural and spectroscopic characterization of the controlled degradation, linker insertion, and subsequent linker thermolysis is presented to show the clustering of acid gas-induced defects and the generation of mesopores. These findings indicate the generality of controlled degradation and reconstruction as a means for linker insertion in a wider variety of MOFs and creating hierarchical porosity. Enhanced molecular diffusion and catalytic activity in the hierarchical ZIF-8 are demonstrated by the adsorption kinetics of 1-butanol and a Knoevenagel condensation reaction.
Collapse
Affiliation(s)
- Arvind Ganesan
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Johannes Leisen
- School
of Chemistry & Biochemistry, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Raghuram Thyagarajan
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - David S. Sholl
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Oak
Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Sankar Nair
- School
of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|