1
|
Li Z, Öztuna E, Skorupska K, Vinogradova OV, Jamshaid A, Steigert A, Rohner C, Dimitrakopoulou M, Prieto MJ, Kunkel C, Stredansky M, Kube P, Götte M, Dudzinski AM, Girgsdies F, Wrabetz S, Frandsen W, Blume R, Zeller P, Muske M, Delgado D, Jiang S, Schmidt FP, Köhler T, Arztmann M, Efimenko A, Frisch J, Kokumai TM, Garcia-Diez R, Bär M, Hammud A, Kröhnert J, Trunschke A, Scheurer C, Schmidt T, Lunkenbein T, Amkreutz D, Kuhlenbeck H, Bukas VJ, Knop-Gericke A, Schlatmann R, Reuter K, Cuenya BR, Schlögl R. Rationally designed laterally-condensed-catalysts deliver robust activity and selectivity for ethylene production in acetylene hydrogenation. Nat Commun 2024; 15:10660. [PMID: 39658559 PMCID: PMC11632098 DOI: 10.1038/s41467-024-54784-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
Future carbon management strategies require storage in elemental form, achievable through a sequence of CO2 hydrogenation reactions. Hydrogen is recycled from molecular intermediates by dehydrogenation, and side product acetylene selectively hydrogenated to ethylene. Existing Pd alloy catalysts for gas purification underperform in concentrated feeds, necessitating novel concepts. Atomistic simulations unveil superior selectivity of Pd:C solid solutions that optimize chemisorption energies and preclude sub-surface hydrides, verified here with model thin films. Multiple design criteria deduced from conventional catalysts facilitate synthesizing a self-repairing Pd:C system of a laterally condensed catalyst (LCC). A Pd layer prepared on a designated SiO2 buffer layer enables control of reactive interface, sub-surface volume and extended functional interface towards the buffer. Function and metric are supervised by operando micro-spectroscopy. This catalyst design shows, ethylene productivity >1 kmolC2H4/gPd/hour is reproducibly achieved and benchmarked against known catalysts. Photovoltaics deposition technologies enable scalability on real-world substrates saving active metal. A design-of-experiment approach demonstrates the improvement potential of the LCC approach.
Collapse
Affiliation(s)
- Zehua Li
- Department of Inorganic Chemistry, Fritz-Haber Institute of the Max Planck Society, Berlin, Germany
| | - Eylül Öztuna
- Department of Inorganic Chemistry, Fritz-Haber Institute of the Max Planck Society, Berlin, Germany
- Bessy II, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
| | - Katarzyna Skorupska
- Department of Inorganic Chemistry, Fritz-Haber Institute of the Max Planck Society, Berlin, Germany.
| | - Olga V Vinogradova
- Theory Department, Fritz-Haber Institute of the Max Planck Society, Berlin, Germany
| | - Afshan Jamshaid
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Berlin, Germany
| | - Alexander Steigert
- PVcomB, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
| | - Christian Rohner
- Department of Inorganic Chemistry, Fritz-Haber Institute of the Max Planck Society, Berlin, Germany
| | - Maria Dimitrakopoulou
- Department of Inorganic Chemistry, Fritz-Haber Institute of the Max Planck Society, Berlin, Germany
| | - Mauricio J Prieto
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Berlin, Germany
| | - Christian Kunkel
- Theory Department, Fritz-Haber Institute of the Max Planck Society, Berlin, Germany
| | - Matus Stredansky
- Department of Inorganic Chemistry, Fritz-Haber Institute of the Max Planck Society, Berlin, Germany
| | - Pierre Kube
- Department of Inorganic Chemistry, Fritz-Haber Institute of the Max Planck Society, Berlin, Germany
| | - Michael Götte
- PVcomB, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
| | | | - Frank Girgsdies
- Department of Inorganic Chemistry, Fritz-Haber Institute of the Max Planck Society, Berlin, Germany
| | - Sabine Wrabetz
- Department of Inorganic Chemistry, Fritz-Haber Institute of the Max Planck Society, Berlin, Germany
| | - Wiebke Frandsen
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Berlin, Germany
| | - Raoul Blume
- Department of Inorganic Chemistry, Fritz-Haber Institute of the Max Planck Society, Berlin, Germany
- Max-Planck-Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - Patrick Zeller
- Department of Inorganic Chemistry, Fritz-Haber Institute of the Max Planck Society, Berlin, Germany
- Bessy II, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
| | - Martin Muske
- PVcomB, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
| | - Daniel Delgado
- Department of Inorganic Chemistry, Fritz-Haber Institute of the Max Planck Society, Berlin, Germany
| | - Shan Jiang
- Department of Inorganic Chemistry, Fritz-Haber Institute of the Max Planck Society, Berlin, Germany
| | - Franz-Philipp Schmidt
- Department of Inorganic Chemistry, Fritz-Haber Institute of the Max Planck Society, Berlin, Germany
| | - Tobias Köhler
- PVcomB, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
| | - Manuela Arztmann
- PVcomB, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
| | - Anna Efimenko
- Department Interface Design, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
| | - Johannes Frisch
- Department Interface Design, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
| | - Tathiana M Kokumai
- Department Interface Design, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
| | - Raul Garcia-Diez
- Department Interface Design, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
| | - Marcus Bär
- Department Interface Design, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (HI ERN), Berlin, Germany
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Adnan Hammud
- Department of Inorganic Chemistry, Fritz-Haber Institute of the Max Planck Society, Berlin, Germany
| | - Jutta Kröhnert
- Department of Inorganic Chemistry, Fritz-Haber Institute of the Max Planck Society, Berlin, Germany
| | - Annette Trunschke
- Department of Inorganic Chemistry, Fritz-Haber Institute of the Max Planck Society, Berlin, Germany
| | - Christoph Scheurer
- Theory Department, Fritz-Haber Institute of the Max Planck Society, Berlin, Germany
| | - Thomas Schmidt
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Berlin, Germany
| | - Thomas Lunkenbein
- Department of Inorganic Chemistry, Fritz-Haber Institute of the Max Planck Society, Berlin, Germany
| | - Daniel Amkreutz
- PVcomB, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
| | - Helmut Kuhlenbeck
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Berlin, Germany
| | - Vanessa J Bukas
- Theory Department, Fritz-Haber Institute of the Max Planck Society, Berlin, Germany
| | - Axel Knop-Gericke
- Department of Inorganic Chemistry, Fritz-Haber Institute of the Max Planck Society, Berlin, Germany
- Max-Planck-Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
| | - Rutger Schlatmann
- PVcomB, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany
| | - Karsten Reuter
- Theory Department, Fritz-Haber Institute of the Max Planck Society, Berlin, Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Berlin, Germany
| | - Robert Schlögl
- Department of Inorganic Chemistry, Fritz-Haber Institute of the Max Planck Society, Berlin, Germany.
| |
Collapse
|