1
|
Du Y, Zhang H, Zou L, Li X, Lv X, Ye J, Deng K, Tian W, Ji J. Manipulating 2D Membrane Interlayer Channels with Accelerated Mass-Transfer Behavior to Boost Solar Desalination. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402105. [PMID: 38727184 DOI: 10.1002/smll.202402105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/30/2024] [Indexed: 10/01/2024]
Abstract
The scarcity of fresh water necessitates sustainable and efficient water desalination strategies. Solar-driven steam generation (SSG), which employs solar energy for water evaporation, has emerged as a promising approach. Graphene oxide (GO)-based membranes possess advantages like capillary action and Marangoni effect, but their stacking defects and dead zones of flexible flakes hinders efficient water transportation, thus the evaporation rate lag behind unobstructed-porous 3D evaporators. Therefore, fundamental mass-transfer approach for optimizing SSG evaporators offers new horizons. Herein, a universal multi-force-fields-based method is presented to regularize membrane channels, which can mechanically eliminate inherent interlayer stackings and defects. Both characterization and simulation demonstrate the effectiveness of this approach across different scales and explain the intrinsic mechanism of mass-transfer enhancement. When combined with a structurally optimized substrate, the 4Laponite@GO-1 achieves evaporation rate of 2.782 kg m-2 h-1 with 94.48% evaporation efficiency, which is comparable with most 3D evaporators. Moreover, the optimized membrane exhibits excellent cycling stability (10 days) and tolerance to extreme conditions (pH 1-14, salinity 1%-15%), verifies the robust structural stability of regularized channels. This optimization strategy provides simple but efficient way to enhance the SSG performance of GO-based membranes, facilitating their extensive application in sustainable water purification technologies.
Collapse
Affiliation(s)
- Yuping Du
- School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - He Zhang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Lie Zou
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Xiaoke Li
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Xingbin Lv
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan, 610041, P. R. China
| | - Jiahui Ye
- School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Kuan Deng
- School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Wen Tian
- School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Junyi Ji
- School of Chemical Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
2
|
Zhang H, Du Y, Jing D, Yang L, Ji J, Li X. Integrated Janus Evaporator with an Enhanced Donnan Effect and Thermal Localization for Salt-Tolerant Solar Desalination and Thermal-to-Electricity Generation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49892-49901. [PMID: 37815919 DOI: 10.1021/acsami.3c12517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Solar-driven interfacial evaporation (SIE) technology has great advantages in seawater desalination. However, during the long-term operation of a solar evaporator, salts can be deposited on the solar absorbing surface, which, in turn, hinders the evaporation process. Therefore, there is an urgent need to propose new antisalt strategies to solve this problem. Here, we present a novel cogeneration system leveraging a salt-tolerant, heterogeneous Janus-structured evaporator (FHJE) for simultaneous solar desalination and thermoelectric generation. The top evaporation layer is composed of a graphene-based photothermal membrane pre-embedded with Fe3+ cations, which enhanced solar absorption and energy conversion abilities. Meanwhile, the Fe3+ cations further contribute to the Donnan effect, effectively repelling salt ions in saltwater. The bottom layer comprises a hydrogel composed of hydrophilic phytic acid (PA) and poly(vinyl alcohol) (PVA), fostering facilitation of water transport. The FHJE was demonstrated to exhibit evaporation rate and efficiency as high as 3.655 kg m-2 h-1 and 94.7% in 10 wt% saltwater, respectively, and superior salt resistance ability without salt accumulation after 8 h of continuous evaporation (15 wt%). Furthermore, a hydropower cogeneration evaporator device was constructed, and it possesses an open-circuit voltage (VOC) and a maximum output power density of up to 143 mV and 1.33 W m-2 under 1 sun, respectively. This study is expected to provide new ideas for comprehensive utilization of solar energy.
Collapse
Affiliation(s)
- He Zhang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Yuping Du
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Dengwei Jing
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Liu Yang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, China
| | - Junyi Ji
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xiaoke Li
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
3
|
Zainab S, Azeem M, Awan SU, Rizwan S, Iqbal N, Rashid J. Optimization of bandgap reduction in 2-dimensional GO nanosheets and nanocomposites of GO/iron-oxide for electronic device applications. Sci Rep 2023; 13:6954. [PMID: 37117234 PMCID: PMC10147644 DOI: 10.1038/s41598-023-33200-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/08/2023] [Indexed: 04/30/2023] Open
Abstract
In this report we have developed different fabrication parameters to tailor the optical bandgap of graphene oxide (GO) nanosheets to make it operational candidate in electronic industry. Here we performed two ways to reduce the bandgap of GO nanosheets. First, we have optimized the oxidation level of GO by reducing amount of oxidizing agent (i.e. KMnO4) to control the sp2/sp3 hybridization ratio for a series of GO nanosheets samples. We noticed the reduction in primary band edge 3.93-3.2 eV while secondary band edge 2.98-2.2 eV of GO nanosheets as the amount of KMnO4 is decreased from 100 to 30%. Second, we have fabricated a series of 2-dimensional nanocomposites sample containing GO/Iron-oxide by using a novel synthesis process wet impregnation method. XRD analysis of synthesized nanocomposites confirmed the presence of both phases,[Formula: see text]-Fe2O3 and Fe3O4 of iron-oxide with prominent plane (001) of GO. Morphological investigation rules out all the possibilities of agglomerations of iron oxide nanoparticles and coagulation of GO nanosheets. Elemental mapping endorsed the homogeneous distribution of iron oxide nanoparticles throughout the GO nanosheets. Raman spectroscopy confirmed the fairly constant ID/IG ratio and FWHM of D and G peaks, thus proving the fact that the synthesis process of nanocomposites has no effect on the degree of oxidation of GO flakes. Red shift in G peak position of all the nanocomposites samples showed the electronic interaction among the constituents of the nanocomposite. Linear decrease in the intensity of PL (Photoluminescence) spectra with the increasing of Iron oxide nanoparticles points towards the increased interaction among the iron oxide nanoparticles and GO flakes. Optical absorption spectroscopy reveals the linear decrease in primary edge of bandgap from 2.8 to 0.99 eV while secondary edge decrease 3.93-2.2 eV as the loading of [Formula: see text]-Fe2O3 nanoparticles is increased from 0 to 5% in GO nanosheets. Among these nanocomposites samples 5%-iron-oxide/95%-GO nanosheet sample may be a good contestant for electronic devices.
Collapse
Affiliation(s)
- Sana Zainab
- Department of Electrical Engineering, College of Electrical and Mechanical Engineering, National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan.
| | - Muhammad Azeem
- Department of Electrical Engineering, College of Electrical and Mechanical Engineering, National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Saif Ullah Awan
- Department of Electrical Engineering, College of Electrical and Mechanical Engineering, National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan.
| | - Syed Rizwan
- Department of Physics, School of Natural Sciences (SNS), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Naseem Iqbal
- US-Pakistan Centre for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Jamshaid Rashid
- Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- BNU-HKUST Laboratory for Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519087, China
| |
Collapse
|
4
|
Peng X, Du Y, Gu Z, Deng K, Liu X, Lv X, Tian W, Ji J. Rearrangement of GO nanosheets with inner and outer forces under high-speed spin for supercapacitor. J Colloid Interface Sci 2023; 644:167-176. [PMID: 37105040 DOI: 10.1016/j.jcis.2023.04.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/31/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023]
Abstract
The self-standing graphene membranes are considered as ideal electrode materials for supercapacitors. However, maintaining highly regularized and uniform graphene membranes with satisfied electrochemical performance is still a challenge. Herein, with the chelation of metal cation and the radial shear force introduced by high-speed spinning, the uniform interlayer channels and shrunken cracks between adjacent nanosheets can be achieved in the metal-intercalated graphene oxide (GO) membranes, thus realizing regularization both in normal and radial direction. With the promotion in electron transfer and electrolyte penetration, the iron cross-linked GO membrane with spin coating for 40 cycles exhibits a high specific capacitance (427 F g-1 at 1 A g-1) and rate capability (42.6% capacitance retention from 1 to 40 A g-1), as well as excellent cyclic capability (90.5% capacitance retention after 20,000 cycles). Particularly, a 21% increasement in capacitance can be achieved after high-speed spinning treatment. Moreover, the spin regularization strategy can be extended to GO membranes cross-linked by various multi-valence metal cations, the electrochemical performance of metal-cation cross-linked GO membrane electrodes after high-speed spinning treatment can also be improved obviously. Therefore, this paper provides a novel method to fabricate highly ordered GO membranes with promising electrochemical performance, which presents an immense potential application in membrane materials applied in energy storage, separation and catalysis.
Collapse
Affiliation(s)
- Xianqiang Peng
- School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Yuping Du
- School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Zheng Gu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Kuan Deng
- School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xuesong Liu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Xingbin Lv
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610041, PR China.
| | - Wen Tian
- School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Junyi Ji
- School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
5
|
Li Z, Li Y, Wang Z, Wu P, Liu N, Liu K, Gu Z, Chen Y, Nie J, Shao H, He Y. 3D-printable and multifunctional conductive nanocomposite with tunable mechanics inspired by sesame candy. NANO ENERGY 2023; 108:108166. [DOI: 10.1016/j.nanoen.2023.108166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Gong S, Zhao F, Zhang Y, Xu H, Li M, Qi J, Wang H, Wang Z, Hu Y, Fan X, Peng W, Li C, Liu J. Few-Layered Ti3C2Tx MXene Synthesized via Water-free Etching toward High-Performance Supercapacitors. J Colloid Interface Sci 2022; 632:216-222. [DOI: 10.1016/j.jcis.2022.11.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/26/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
|
7
|
Gong S, Zhao F, Xu H, Li M, Qi J, Wang H, Wang Z, Fan X, Li C, Liu J. Iodine-Functionalized Titanium Carbide MXene with Ultra-Stable Pseudocapacitor Performance. J Colloid Interface Sci 2022; 615:643-649. [DOI: 10.1016/j.jcis.2022.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 01/10/2023]
|