1
|
Zhou X, Min P, Liu Y, Jin M, Yu ZZ, Zhang HB. Insulating electromagnetic-shielding silicone compound enables direct potting electronics. Science 2024; 385:1205-1210. [PMID: 39265019 DOI: 10.1126/science.adp6581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/13/2024] [Indexed: 09/14/2024]
Abstract
Traditional electromagnetic interference-shielding materials are predominantly electrically conductive, posing short-circuit risks when applied in highly integrated electronics. To overcome this dilemma, we propose a microcapacitor-structure model comprising conductive fillers as polar plates and intermediate polymer as a dielectric layer to develop insulating electromagnetic interference-shielding polymer composites. The electron oscillation in plates and dipole polarization in dielectric layers contribute to the reflection and absorption of electromagnetic waves. Guided by this, the synergistic nonpercolation densification and dielectric enhancement enable our composite to combine high resistivity, shielding performance, and thermal conductivity. Its insulating feature allows for direct potting into the crevices among assembled components to address electromagnetic compatibility and heat-accumulation issues.
Collapse
Affiliation(s)
- Xinfeng Zhou
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Peng Min
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yue Liu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Meng Jin
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhong-Zhen Yu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hao-Bin Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Key Laboratory of Advanced Functional Polymer Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
2
|
Zhou MH, Yin GZ, Prolongo SG, Wang DY. Recent Progress on Multifunctional Thermally Conductive Epoxy Composite. Polymers (Basel) 2023; 15:2818. [PMID: 37447467 DOI: 10.3390/polym15132818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
In last years, the requirements for materials and devices have increased exponentially. Greater competitiveness; cost and weight reduction for structural materials; greater power density for electronic devices; higher design versatility; materials customizing and tailoring; lower energy consumption during the manufacturing, transport, and use; among others, are some of the most common market demands. A higher operational efficiency together with long service life claimed. Particularly, high thermally conductive in epoxy resins is an important requirement for numerous applications, including energy and electrical and electronic industry. Over time, these materials have evolved from traditional single-function to multifunctional materials to satisfy the increasing demands of applications. Considering the complex application contexts, this review aims to provide insight into the present state of the art and future challenges of thermally conductive epoxy composites with various functionalities. Firstly, the basic theory of thermally conductive epoxy composites is summarized. Secondly, the review provides a comprehensive description of five types of multifunctional thermally conductive epoxy composites, including their fabrication methods and specific behavior. Furthermore, the key technical problems are proposed, and the major challenges to developing multifunctional thermally conductive epoxy composites are presented. Ultimately, the purpose of this review is to provide guidance and inspiration for the development of multifunctional thermally conductive epoxy composites to meet the increasing demands of the next generation of materials.
Collapse
Affiliation(s)
- Mei-Hui Zhou
- Materials Science and Engineering Area, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, C/ Tulipán s/n, Móstoles, 28933 Madrid, Spain
| | - Guang-Zhong Yin
- Escuela Politécnica Superior, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda Km 1, 800, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Silvia González Prolongo
- Materials Science and Engineering Area, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, C/ Tulipán s/n, Móstoles, 28933 Madrid, Spain
| | - De-Yi Wang
- IMDEA Materials Institute, C/Eric Kandel 2, Getafe, 28906 Madrid, Spain
| |
Collapse
|
3
|
Fang H, Gao X, Zhang F, Zhou W, Qi G, Song K, Cheng S, Ding Y, Winter HH. Triblock Elastomeric Vitrimers: Preparation, Morphology, Rheology, and Applications. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Huagao Fang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
- Anhui Province Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009, Anhui, China
| | - Xingchen Gao
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Fan Zhang
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Wenjuan Zhou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Guobin Qi
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Kai Song
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Sheng Cheng
- Instrumental Analysis Center, Hefei University of Technology, Hefei 230009, Anhui, China
| | - Yunsheng Ding
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, Anhui, China
- Anhui Province Key Laboratory of Advanced Functional Materials and Devices, Hefei 230009, Anhui, China
| | | |
Collapse
|
4
|
Zhou W, Ren S, Zhang F, Gao X, Song K, Fang H, Ding Y. Reinforcement of boron–nitrogen coordinated polyurethane elastomers with silica nanoparticles. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|