1
|
Muroga J, Kamio E, Matsuoka A, Nakagawa K, Yoshioka T, Matsuyama H. Development of an ion gel-based CO 2 separation membrane composed of Pebax 1657 and a CO 2-philic ionic liquid. RSC Adv 2024; 14:20786-20796. [PMID: 38952929 PMCID: PMC11215809 DOI: 10.1039/d3ra08730a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
A tough ion gel membrane containing a CO2-philic ionic liquid, 1-ethyl-3-methylimidazolium tricyanomethanide ([Emim][C(CN)3]), was developed, and its CO2 permeation properties were evaluated under humid conditions at elevated temperatures. Pebax 1657, which is a diblock copolymer composed of a polyamide block and a polyethylene oxide block, was used as the gel network of the ion gel membrane to prepare a tough ion gel with good ionic liquid-holding properties. The polyamide block formed a semicrystalline structure in [Emim][C(CN)3] to toughen the ion gel membrane via an energy dissipation mechanism. The polyethylene oxide block exhibited good compatibility with [Emim][C(CN)3] and contributed to the retention of the ionic liquid in the ion gel. The developed ion gel membrane showed a good CO2 separation performance of 1677 barrer CO2 permeability and 37 CO2/N2 permselectivity under humid conditions of 75% relative humidity at an elevated temperature of 50 °C, which corresponds to an exhaust gas from a coal-fired power plant.
Collapse
Affiliation(s)
- Jo Muroga
- Research Center for Membrane and Film Technology, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
- Department of Chemical Science and Engineering, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
| | - Eiji Kamio
- Research Center for Membrane and Film Technology, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
- Department of Chemical Science and Engineering, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
| | - Atsushi Matsuoka
- Research Center for Membrane and Film Technology, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
- Department of Chemical Science and Engineering, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
| | - Keizo Nakagawa
- Research Center for Membrane and Film Technology, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
- Graduate School of Science, Technology and Innovation, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
| | - Tomohisa Yoshioka
- Research Center for Membrane and Film Technology, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
- Graduate School of Science, Technology and Innovation, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
- Department of Chemical Science and Engineering, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
| |
Collapse
|
2
|
Mizutani Y, Watanabe T, Lopez CG, Ono T. Controlled mechanical properties of poly(ionic liquid)-based hydrophobic ion gels by the introduction of alumina nanoparticles with different shapes. SOFT MATTER 2024; 20:1611-1619. [PMID: 38275008 DOI: 10.1039/d3sm01626a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Ionic-liquid gels, also known as ion gels, have gained considerable attention due to their high ionic conductivity and CO2 absorption capacity. However, their low mechanical strength has hindered their practical applications. A potential solution to this challenge is the incorporation of particles, such as silica nanoparticles, TiO2 nanoparticles, and metal-organic frameworks (MOFs) into ion gels. Comparative studies on the effect of particles with different shapes are still in progress. This study investigated the effect of the shape of particles introduced into ion gels on their mechanical properties. Consequently, alumina/poly(ionic liquid) (PIL) double-network (DN) ion gels consisting of clustered alumina nanoparticles with various shapes (either spherical or rod-shaped) and a chemically crosslinked poly[1-ethyl-3-vinylimidazolium bis(trifluoromethanesulfonyl)imide] (PC2im-TFSI, PIL) network were prepared. The results revealed that the mechanical strengths of the alumina/PIL DN ion gels were superior to those of PIL single-network ion gels without particles. Notably, the fracture energies of the rod-shaped alumina/PIL DN ion gels were approximately 2.6 times higher than those of the spherical alumina/PIL DN ion gels. Cyclic tensile tests were performed, and the results indicate that the loading energy on the ion gel was dissipated through the fracture of the alumina network. TEM observation suggests that the variation in the mechanical strength depending on the shape can be attributed to differences in the aggregation structure of the alumina particles, thus indicating the possibility of tuning the mechanical strength of ion gels by altering not only particle kinds but its shape.
Collapse
Affiliation(s)
- Yuna Mizutani
- Department of Applied Chemistry, Graduate School of Natural Science, Okayama University, 3-1-1, Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan.
| | - Takaichi Watanabe
- Department of Applied Chemistry, Graduate School of Natural Science, Okayama University, 3-1-1, Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan.
| | - Carlos G Lopez
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Tsutomu Ono
- Department of Applied Chemistry, Graduate School of Natural Science, Okayama University, 3-1-1, Tsushima-naka, Kita-ku, Okayama, 700-8530, Japan.
| |
Collapse
|
3
|
Murakami K, Isano Y, Asada J, Usami N, Isoda Y, Takano T, Matsuda R, Ueno K, Fuchiwaki O, Ota H. Self-assembling bilayer wiring with highly conductive liquid metal and insulative ion gel layers. Sci Rep 2023; 13:5929. [PMID: 37045927 PMCID: PMC10097700 DOI: 10.1038/s41598-023-32580-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Ga-based liquid metals (LMs) are expected to be suitable for wiring highly deformable devices because of their high electrical conductivity and stable resistance to extreme deformation. Injection and printed wiring, and wiring using LM-polymer composites are the most popular LM wiring approaches. However, additional processing is required to package the wiring after LM patterning, branch and interrupt wiring shape, and ensure adequate conductivity, which results in unnecessary wiring shape changes and increased complexity of the wiring methods. In this study, we propose an LM-polymer composite comprising LM particles and ion gel as a flexible matrix material with low viscosity and specific gravity before curing. Moreover, the casting method is used for wire patterning, and the material is cured at room temperature to ensure that the upper insulative layer of the ion gel self-assembles simultaneously with the formation of LM wiring in the lower layer. High conductivity and low resistance change rate of the formed wiring during deformation are achieved without an activation process. This ion gel-LM bilayer wiring can be used for three-dimensional wiring by stacking. Furthermore, circuits fabricated using ion gel-LM bilayer wiring exhibit stable operation. Therefore, the proposed method can significantly promote the development of flexible electronic devices.
Collapse
Affiliation(s)
- Koki Murakami
- Department of Mechanical Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya-Ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Yuji Isano
- Department of Mechanical Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya-Ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Juri Asada
- Department of Chemistry and Life Science, Yokohama National University, 79-5, Tokiwadai, Hodogaya-Ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Natsuka Usami
- Department of Chemistry and Life Science, Yokohama National University, 79-5, Tokiwadai, Hodogaya-Ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Yutaka Isoda
- Graduate School of System Integration, Yokohama National University, 79-5, Tokiwadai, Hodogaya-Ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Tamami Takano
- Graduate School of System Integration, Yokohama National University, 79-5, Tokiwadai, Hodogaya-Ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Ryosuke Matsuda
- Department of Mechanical Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya-Ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Kazuhide Ueno
- Department of Chemistry and Life Science, Yokohama National University, 79-5, Tokiwadai, Hodogaya-Ku, Yokohama, Kanagawa, 240-8501, Japan
- Graduate School of Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya-Ku, Yokohama, Kanagawa, 240-8501, Japan
| | - Ohmi Fuchiwaki
- Department of Mechanical Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya-Ku, Yokohama, Kanagawa, 240-8501, Japan.
- Graduate School of System Integration, Yokohama National University, 79-5, Tokiwadai, Hodogaya-Ku, Yokohama, Kanagawa, 240-8501, Japan.
| | - Hiroki Ota
- Department of Mechanical Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya-Ku, Yokohama, Kanagawa, 240-8501, Japan.
- Graduate School of System Integration, Yokohama National University, 79-5, Tokiwadai, Hodogaya-Ku, Yokohama, Kanagawa, 240-8501, Japan.
| |
Collapse
|
4
|
Shi L, Fu X, Li Y, Wu S, Meng S, Wang J. Molecular Dynamic Simulations and Experiments Study on the Mechanical Properties of HTPE/PEG Interpenetrating Polymer Network (IPN) Binders. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:268. [PMID: 36678020 PMCID: PMC9862093 DOI: 10.3390/nano13020268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
The mechanical properties of HTPE/PEG interpenetrating polymer network (IPN) binders were systemically studied with molecular dynamics (MDs) simulations and experiments. In this study, an algorithm was used to construct the crosslinking interpenetrating polymer network models and then the mechanical behaviors of Hydroxyl-terminated polyethylene glycol-tetrahydrofuran co-polyether/poly ethylene glycol (HTPE/PEG) IPN models were analyzed at a molecular scale. Firstly, glass transition temperatures (Tg), mean square displacement (MSD) and mechanical properties of IPN crosslinked model simulations showed that better thermomechanical parameters appeared at low temperatures, which were in good agreement with the experimental methods, including dynamic mechanical analysis and uniaxial tensile. Then bond-length distribution was performed to verify the crosslinked structures between prepolymers and curing agents. FTIR-ATR spectra analysis of four IPN binder specimens also gave a convictive result to the special interpenetrating polymer network of polyether polyurethane binders. Cohesive energy density and friction-free volume explained how the micro-structures of IPN crosslinked models and the force of inter-molecule chains affected the mechanical behaviors of the HTPE/PEG polyurethane matrix. Lastly, the morphology of IPN binder specimen tensile fracture indicated the mechanism at different temperatures. These studies were helpful in understanding the mechanical properties of HTPE/PEG interpenetrating polymer network binders and provide molecular insight into mechanisms of mechanical behaviors, which would guide the property improvement of HTPE propellant.
Collapse
Affiliation(s)
| | - Xiaolong Fu
- Xi’an Modern Chemistry Research Institute, Xi’an 710065, China
| | | | | | | | | |
Collapse
|
7
|
Wang L, Liu S, Cheng J, Peng Y, Meng F, Wu Z, Chen H. Poly( N, N-dimethyl)acrylamide-based ion-conductive gel with transparency, self-adhesion and rapid self-healing properties for human motion detection. SOFT MATTER 2022; 18:6115-6123. [PMID: 35943040 DOI: 10.1039/d2sm00786j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flexible strain sensors have been extensively studied for their potential value in monitoring human activity and health. However, it is still challenging to develop multifunctional flexible strain sensors with simultaneously high transparency, strong self-adhesion, fast self-healing and excellent tensile properties. In this study, we used N,N-dimethylacrylamide (DMA) in the imidazolium-based ionic liquid 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl] imide ([BMIM][Tf2N]) for "one-step" UV irradiation. A poly(N,N-dimethyl)acrylamide (PDMA) ion-conductive gel was prepared by site polymerization. Based on the good compatibility between PDMA and ionic liquid, the prepared ion-conductive gel has good transparency (∼90%), excellent stretchability (1080%), strong self-adhesion (67.57 kPa), fast self-healing (2 s at room temperature) and great antibacterial activity (∼99% bacterial killing efficiency). Moreover, the strain sensor based on the PDMA ion-conductive gel has good electromechanical performance and can detect different human motions. Based on the simple and easy-to-operate preparation method and the endowed multifunctionality of the PDMA ion-conductive gel, it has broad application prospects in the field of flexible electronic devices.
Collapse
Affiliation(s)
- Ling Wang
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Shengjie Liu
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Jingjing Cheng
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Yao Peng
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Fangfei Meng
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Zhaoqiang Wu
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Hong Chen
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| |
Collapse
|