1
|
Mirella da Silva L, Mena IF, Sáez C, Motheo AJ, Rodrigo MA. Remediation of soils contaminated with methomyl using electrochemically produced gaseous oxidants. CHEMOSPHERE 2024; 362:142653. [PMID: 38906193 DOI: 10.1016/j.chemosphere.2024.142653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
This prospective work focuses on the use of two different gaseous oxidants (chlorine dioxide and ozone) to remediate soil polluted with methomyl in two different applications: ex-situ and in-situ. In the first, the soil washing is integrated with the bubbling of the oxidant, while in the second, the gas was introduced by a perforated pipe located sub-superficially. Regarding the soil washing treatment, results demonstrate that direct use of ozone is not very efficient, although an important improvement is obtained following activation with hydrogen peroxide or UV light. In contrast, chlorine dioxide exhibited complete methomyl depletion from the soil, although with higher energy consumption and technical complexity compared to ozone. The direct dosing of the gaseous oxidants in perforated pipes is effective, achieving methomyl removals of 7.8 % and 9.2 % using ozone and chlorine dioxide, respectively. In these cases, soil conditions are not significantly modified, which becomes an important advantage of the technology as compared with other electrochemically assisted soil remediation process, in which large regions of the treated soil are affected by important changes in the pH or by depletion of ions. This lower impact makes these novel technologies more promising for further evaluations.
Collapse
Affiliation(s)
- Leticia Mirella da Silva
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, P.O. Box 780, CEP 13560-97, Brazil; Department of Chemical Engineering. Faculty of Chemical Sciences and Technologies. University of Castilla La Mancha. Campus Universitario s/n 13071 Ciudad Real, Spain
| | - Ismael F Mena
- Department of Chemical Engineering. Faculty of Chemical Sciences and Technologies. University of Castilla La Mancha. Campus Universitario s/n 13071 Ciudad Real, Spain.
| | - Cristina Sáez
- Department of Chemical Engineering. Faculty of Chemical Sciences and Technologies. University of Castilla La Mancha. Campus Universitario s/n 13071 Ciudad Real, Spain
| | - Artur J Motheo
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, P.O. Box 780, CEP 13560-97, Brazil
| | - Manuel A Rodrigo
- Department of Chemical Engineering. Faculty of Chemical Sciences and Technologies. University of Castilla La Mancha. Campus Universitario s/n 13071 Ciudad Real, Spain
| |
Collapse
|
2
|
da Silva L, Mena IF, Saez C, Motheo AJ, Rodrigo MA. Treatment of Organics in Wastewater Using Electrogenerated Gaseous Oxidants. Ind Eng Chem Res 2024; 63:6512-6520. [PMID: 38660619 PMCID: PMC11036394 DOI: 10.1021/acs.iecr.3c03265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024]
Abstract
This work focuses on the comparison of the performance of direct electrochemical oxidation with indirect electrolysis mediated by gaseous oxidants in the treatment of diluted wastewater. To do this, energy consumptions of the electrolysis using mixed metal oxide (MMO) electrodes are compared with those required for the production and use of chlorine dioxide in the degradation of methomyl contained in aqueous solutions. Results demonstrate the feasibility of the mediated oxidation process and that this process is competitive with direct oxidation. The oxidants are produced under optimized conditions using the same anodic material applied for the direct degradation of organics, thus avoiding efficiency losses associated with mass transfer limitations in the degradation of dilute organic solutions. Thus, using the ClO2 gaseous oxidant, a concentration of 0.1 mM of methomyl from a solution containing 500 mL is completely removed with an energy consumption as low as 50 Wh. The application of the same energy to a direct electrolytic process for treating the same wastewater can only reach less than half of this removal. These findings may have a very important application in the use of electrochemical technology to achieve the remediation of persistent pollutants in wastewater, where their low concentrations typically make direct processes very inefficient.
Collapse
Affiliation(s)
- Leticia
Mirella da Silva
- São
Carlos Institute of Chemistry, University
of São Paulo, P.O. Box 780, CEP 13560-970 São Carlos, SP, Brazil
- Department
of Chemical Engineering. Faculty of Chemical Sciences and Technologies, University of Castilla La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | - Ismael F. Mena
- Department
of Chemical Engineering. Faculty of Chemical Sciences and Technologies, University of Castilla La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | - Cristina Saez
- Department
of Chemical Engineering. Faculty of Chemical Sciences and Technologies, University of Castilla La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | - Artur J. Motheo
- São
Carlos Institute of Chemistry, University
of São Paulo, P.O. Box 780, CEP 13560-970 São Carlos, SP, Brazil
| | - Manuel A. Rodrigo
- Department
of Chemical Engineering. Faculty of Chemical Sciences and Technologies, University of Castilla La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| |
Collapse
|
3
|
Demir A, Geçgel C, Gören N. Electrochemical degradation of favipiravir (anti-viral) drug from aqueous solution: optimization of operating parameters using the response surface method. ENVIRONMENTAL TECHNOLOGY 2023; 44:4334-4351. [PMID: 35712767 DOI: 10.1080/09593330.2022.2091483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
The aim of the current study is to investigate the efficacy of the electro-Fenton process in the degradation of favipiravir drugs from aqueous solutions, which has increased in use as a result of the COVID-19 pandemic. The Response Surface Methodology (RSM) was developed using a Central Composite Design (CCD) in which five independent variables, including Fe2+ concentration, current density, initial FVP concentration, pH, and reaction time, were coded with high and low levels, and the maximum removal percentage of FVP (97.8%) and COD (91.65%) were determined as responses. In the EF process, 530 mg/L H2O2 was produced in-situ by cathodic reduction of O2 in aqueous solution and thus FVP has been successfully oxidized through hydroxyl radicals. The H2O2/Fe2+ ratio was determined to be 0.51 under optimum conditions. At the end of the experiment, the maximum energy consumption was found to be 2.12 kWh per g COD. The FVP was completely mineralized in a very short time by the EF process, according to the LC-MS/MS examination. The EF process followed the pseudo first-order kinetic model with the rate constants of 0.023, 0.016 and 0.006 1/min for pH 2, 3 and 4, respectively. According to the findings of this study, the electro-Fenton process is an effective method for removing FVP from aqueous solutions. To the authors' knowledge, this is the first study to show the degradation and optimum conditions of FVP in aqueous solution using the electro-Fenton (EF) process.
Collapse
Affiliation(s)
- Aydeniz Demir
- Department of Environmental Engineering, Faculty of Engineering, Mersin University, Mersin, Turkey
| | - Cihan Geçgel
- Advanced Technology Education Research and Application Center, Mersin University, Mersin, Turkey
| | - Nazım Gören
- Department of Environmental Engineering, Faculty of Engineering, Mersin University, Mersin, Turkey
| |
Collapse
|
4
|
Pertegal V, Riquelme E, Lozano-Serra J, Cañizares P, Rodrigo MA, Sáez C, Lacasa E. Cleaning technologies integrated in duct flows for the inactivation of pathogenic microorganisms in indoor environments: A critical review of recent innovations and future challenges. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118798. [PMID: 37591101 DOI: 10.1016/j.jenvman.2023.118798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
Pathogenic microorganisms are a major concern in indoor environments, particularly in sensitive facilities such as hospitals, due to their potential to cause nosocomial infections. This study evaluates the concentration of airborne bacteria and fungi in the University Hospital Complex of Albacete (Spain), comparing the results with recent literature. Staphylococcus is identified as the most prevalent bacterial genus with a percentage distribution of 35%, while Aspergillus represents the dominant fungal genus at 34%. The lack of high Technology Readiness Levels (TRL 6, TRL 7) for effective indoor air purification requires research efforts to bridge this knowledge gap. A screening of disinfection technologies for pathogenic airborne microorganisms such as bacteria and fungi is conducted. The integration of filtration, irradiation or and (electro)chemical gas treatment systems in duct flows is discussed to enhance the design of the air-conditioning systems for indoor air purification. Concerns over microbial growth have led to recent studies on coating commercial fibrous air filters with antimicrobial particles (silver nanoparticles, iron oxide nanowires) and polymeric materials (polyaniline, polyvinylidene fluoride). Promising alternatives to traditional short-wave UV-C energy for disinfection include LED and Far-UVC irradiation systems. Additionally, research explores the use of TiO2 and TiO2 doped with metals (Ag, Cu, Pt) in filters with photocatalytic properties, enabling the utilization of visible or solar light. Hybrid photocatalysis, combining TiO2 with polymers, carbon nanomaterials, or MXene nanomaterials, enhances the photocatalytic process. Chemical treatment systems such as aerosolization of biocidal agents (benzalkonium chloride, hydrogen peroxide, chlorine dioxide or ozone) with their possible combination with other technologies such as adsorption, filtration or photocatalysis, are also tested for gas disinfection. However, the limited number of studies on the use of electrochemical technology poses a challenge for further investigation into gas-phase oxidant generation, without the formation of harmful by-products, to raise its TRL for effectively inactivating airborne microorganisms in indoor environments.
Collapse
Affiliation(s)
- Víctor Pertegal
- Department of Chemical Engineering, Higher Technical School of Industrial Engineering, University of Castilla-La Mancha, Edificio Infante Don Juan Manuel, Campus Universitario s/n, 02071, Albacete, Spain
| | - Eva Riquelme
- Clinical Parasitology and Microbiology Area. University Hospital Complex of Albacete, C/ Hermanos Falcó 37, 02006, Albacete, Spain
| | - Julia Lozano-Serra
- Clinical Parasitology and Microbiology Area. University Hospital Complex of Albacete, C/ Hermanos Falcó 37, 02006, Albacete, Spain
| | - Pablo Cañizares
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005, Ciudad Real, Spain
| | - Manuel A Rodrigo
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005, Ciudad Real, Spain
| | - Cristina Sáez
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005, Ciudad Real, Spain
| | - Engracia Lacasa
- Department of Chemical Engineering, Higher Technical School of Industrial Engineering, University of Castilla-La Mancha, Edificio Infante Don Juan Manuel, Campus Universitario s/n, 02071, Albacete, Spain.
| |
Collapse
|
5
|
Modeling the electrosynthesis of H2O2: Understanding the role of predatory species. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
6
|
Marques Cordeiro-Junior PJ, Sáez Jiménez C, Vasconcelos Lanza MRD, Rodrigo Rodrigo MA. Electrochemical production of extremely high concentrations of hydrogen peroxide in discontinuous processes. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Cordeiro-Junior PJM, Lobato Bajo J, Lanza MRDV, Rodrigo Rodrigo MA. Highly Efficient Electrochemical Production of Hydrogen Peroxide Using the GDE Technology. Ind Eng Chem Res 2022; 61:10660-10669. [PMID: 35941851 PMCID: PMC9354083 DOI: 10.1021/acs.iecr.2c01669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/28/2022]
Abstract
This work examines the role of oxygen supply in the improvement of the hydrogen peroxide (H2O2) electrochemical production efficiency and the generation of high H2O2 concentrations in electrochemical processes operated in a discontinuous mode. To conduct this study, a highly efficient Printex L6 carbon-based gas diffusion electrode (GDE) as a cathode was employed for the electrogeneration of H2O2 in a flow-by reactor and evaluated the effects of lowering the operation temperature (to increase solubility) and increasing the air supply in the system on H2O2 electrogeneration. The results obtained in this study show that unlike what is expected in flow-through reactors, the efficiency in the H2O2 production is not affected by the solubility of oxygen when GDE is employed in the electrochemical process (using the flow-by reactor); i.e., the efficiency of H2O2 production is not significantly dependent on O2 solubility, temperature, and pressure. The application of the proposed PL6C-based GDE led to the generation of accumulated H2O2 of over 3 g L-1 at a high current density. It should be noted, however, that the application of the electrocatalyst at lower current densities resulted in higher energy efficiency in terms of H2O2 production. Precisely, a specific production of H2O2 as high as 131 g kWh-1 was obtained at 25 mA cm-2; the energy efficiency (in terms of H2O2 production) values obtained in this study based on the application of the proposed GDE in a flow-by reactor at low current densities were found to be within the range of values recorded for H2O2 production techniques that employ flow-through reactors.
Collapse
Affiliation(s)
- Paulo Jorge Marques Cordeiro-Junior
- São Carlos Institute of Chemistry, University of São Paulo (USP), Trabalhador São-carlense Street 400, 13566-590 São Carlos, SP, Brazil.,Department of Chemical Engineering, Universidad de Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | - Justo Lobato Bajo
- Department of Chemical Engineering, Universidad de Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| | | | - Manuel Andrés Rodrigo Rodrigo
- Department of Chemical Engineering, Universidad de Castilla-La Mancha, Campus Universitario s/n, 13071 Ciudad Real, Spain
| |
Collapse
|