1
|
Guo X, Zhang M, Qin J, Li Z, Rankl C, Jiang X, Zhang B, Wang D, Tang J. Revealing the Effect of Photothermal Therapy on Human Breast Cancer Cells: A Combined Study from Mechanical Properties to Membrane HSP70. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21965-21973. [PMID: 37127843 DOI: 10.1021/acsami.3c02964] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Hyperthermia-induced overexpression of heat shock protein 70 (HSP70) leads to the thermoresistance of cancer cells and reduces the efficiency of photothermal therapy (PTT). In contrast, cancer cell-specific membrane-associated HSP70 has been proven to activate antitumor immune responses. The dual effect of HSP70 on cancer cells inspires us that in-depth research of membrane HSP70 (mHSP70) during PTT treatment is essential. In this work, a PTT treatment platform for human breast cancer cells (MCF-7 cells) based on a mPEG-NH2-modified polydopamine (PDA)-coated gold nanorod core-shell structure (GNR@PDA-PEG) is developed. Using the force-distance curve-based atomic force microscopy (FD-based AFM), we gain insight into the PTT-induced changes in the morphology, mechanical properties, and mHSP70 expression and distribution of individual MCF-7 cells with high-resolution at the single-cell level. PTT treatment causes pseudopod contraction of MCF-7 cells and generates a high level of intracellular reactive oxygen species, which severely disrupt the cytoskeleton, leading to a decrease in cellular mechanical properties. The adhesion maps, which are recorded by aptamer A8 functional probes using FD-based AFM, reveal that PTT treatment causes a significant upregulation of mHSP70 expression and it starts to exhibit a partial aggregation distribution on the MCF-7 cell surface. This work not only exemplifies that AFM can be a powerful tool for detecting changes in cancer cells during PTT treatment but also provides a better view for targeting mHSP70 for cancer therapy.
Collapse
Affiliation(s)
- Xinyue Guo
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- University of Science and Technology of China, Hefei 230026, P.R. China
| | - Miaomiao Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Juan Qin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- University of Science and Technology of China, Hefei 230026, P.R. China
| | - Zongjia Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- University of Science and Technology of China, Hefei 230026, P.R. China
| | - Christian Rankl
- Research Center for Non-Destructive Testing GmbH, Science Park 2/2, OG, Altenberger Straße 69, A-4040 Linz, Austria
| | - Xiue Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- University of Science and Technology of China, Hefei 230026, P.R. China
| | - Bailin Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Dapeng Wang
- University of Science and Technology of China, Hefei 230026, P.R. China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jilin Tang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- University of Science and Technology of China, Hefei 230026, P.R. China
| |
Collapse
|
2
|
Sun H, Wang J. Novel perspective for protein-drug interaction analysis: atomic force microscope. Analyst 2023; 148:454-474. [PMID: 36398684 DOI: 10.1039/d2an01591a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Proteins are major drug targets, and drug-target interaction identification and analysis are important factors for drug discovery. Atomic force microscopy (AFM) is a powerful tool making it possible to image proteins with nanometric resolution and probe intermolecular forces under physiological conditions. We review recent studies conducted in the field of target protein drug discovery using AFM-based analysis technology, including drug-driven changes in nanomechanical properties of protein morphology and interactions. Underlying mechanisms (including thermodynamic and kinetic parameters) of the drug-target interaction and drug-modulating protein-protein interaction (PPI) on the surfaces of models or living cells are discussed. Furthermore, challenges and the outlook for the field are likewise discussed. Overall, this insight into the mechanical properties of protein-drug interactions provides an unprecedented information framework for rational drug discovery in the pharmaceutical field.
Collapse
Affiliation(s)
- Heng Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Jianhua Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
3
|
Qin J, Zhang M, Guan Y, Guo X, Li Z, Rankl C, Tang J. Imaging and quantifying analysis the binding behavior of PD-L1 at molecular resolution by atomic force microscopy. Anal Chim Acta 2022; 1191:339281. [PMID: 35033247 DOI: 10.1016/j.aca.2021.339281] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/20/2021] [Accepted: 11/11/2021] [Indexed: 11/25/2022]
Abstract
Immunotherapy has emerged as an effective treatment modality for cancer. The interaction of programmed cell death ligand-1 (PD-L1) and programmed cell death protein-1 (PD-1) plays a key role in tumor-related immune escape and has become one of the most extensive targets for immunotherapy. Herein, we investigated the interaction of PD-L1 with its antibody and PD-1 using atomic force microscopy-based single molecule force spectroscopy for the first time. It was found that the PD-L1/anti-PD-L1 antibody complex was easier to dissociate than PD-L1/PD-1. The unbinding forces of specific interaction of PD-L1 on T24 cells with its antibody and PD-1 were quantitatively measured and similar to those on substrate. In addition, the location of PD-L1 on T24 cells was mapped at the single-molecule level by force-volume mapping. The force maps revealed that PD-L1 randomly distributed on T24 cells surface. The recognition events on cells obviously increased after INF-γ treatment, which proved that INF-γ up-regulated the expression of PD-L1 on T24 cells. These findings enrich our understanding of the molecular mechanisms by which PD-L1 interacts with its antibody and PD-1. It provides useful information for the physical factors that is needed to be considered in the design of inhibitors for tumor immunology.
Collapse
Affiliation(s)
- Juan Qin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China; University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Miaomiao Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China; University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Yanxue Guan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China; University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Xinyue Guo
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China; University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Zongjia Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China; University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Christian Rankl
- Research Center for Non Destructive Testing GmbH, Science Park 2/2. OG, Altenberger Straße 69, A-4040, Linz, Austria
| | - Jilin Tang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China; University of Science and Technology of China, Hefei, 230026, P.R. China.
| |
Collapse
|
4
|
Zhang M, Liu Y, Cui F, Rankl C, Qin J, Guan Y, Guo X, Zhang B, Tang J. Interaction of vascular endothelial growth factor and heparin quantified by single molecule force spectroscopy. NANOSCALE 2020; 12:11927-11935. [PMID: 32458960 DOI: 10.1039/d0nr01570a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Heparin, as an effective anticoagulant, has been increasingly used in clinical practice, but the binding characteristics and influence of exogenous heparin on heparin-affinity proteins in the body are still unclear. Vascular endothelial growth factor A (VEGF-A) is a kind of protein with heparin affinity involved in the pathogenesis and progression of many angiogenesis-dependent diseases including cancer. As an important step in the angiogenesis-related cascade, it is necessary to clarify the interaction between VEGF165 (the major form of VEGF-A) and heparin. In this work, we investigated this interaction based on single molecule force spectroscopy (SMFS) and molecular dynamics (MD) simulation. From the SMFS study, binding forces between VEGF165 and heparin at different loading rates were quantified under near-physiological conditions. Meanwhile, the kinetic and thermodynamic parameters of the VEGF165/heparin complex dissociation process were also obtained. Results of MD simulation visually displayed the most likely binding conformation of VEGF165/heparin* complex, indicating that hydrogen bonding and hydrophobic interaction play a positive role in the binding between the two molecules. This work provides a new insight into the binding between VEGF165 and heparin and offers a research framework to study the interaction between heparin and multiple heparin affinity proteins, which is helpful for guiding the safe application of heparin in the clinic.
Collapse
Affiliation(s)
- Miaomiao Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China. and University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Ying Liu
- College of Humanities & Information Changchun University of Technology, Changchun, 130122, P. R. China
| | - Fengchao Cui
- Key Laboratory of High-Performance Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Christian Rankl
- Research Center for Non Destructive Testing GmbH, Science Park 2/2. OG, Altenberger Straße 69, A-4040 Linz, Austria
| | - Juan Qin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China. and University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yanxue Guan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China. and University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xinyue Guo
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China. and University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Bailin Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China. and University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jilin Tang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China. and University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
5
|
Zheng Y, Wang Q, Yang X, Nie W, Zou L, Liu X, Wang K. Aptamer as a Tool for Investigating the Effects of Electric Field on Aβ40 Monomer and Aggregates Using Single-Molecule Force Spectroscopy. Anal Chem 2018; 91:1954-1961. [DOI: 10.1021/acs.analchem.8b04278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yan Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Wenyan Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Liyuan Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaofeng Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| |
Collapse
|
6
|
Optical fiber tips for biological applications: From light confinement, biosensing to bioparticles manipulation. Biochim Biophys Acta Gen Subj 2018; 1862:1209-1246. [DOI: 10.1016/j.bbagen.2018.02.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/26/2018] [Accepted: 02/13/2018] [Indexed: 12/15/2022]
|