1
|
Zhang M, Duan T, Luo Y, Zhang H, Li W, Wang X, Han J. Impact mechanisms of various surfactants on the biodegradation of phenanthrene in soil: Bioavailability and microbial community responses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175225. [PMID: 39098418 DOI: 10.1016/j.scitotenv.2024.175225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/11/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
The present study was conducted to systematically explore the mechanisms underlying the impact of various surfactants (CTAB, SDBS, Tween 80 and rhamnolipid) at different doses (10, 100 and 1000 mg/kg) on the biodegradation of a model polycyclic aromatic hydrocarbon (PAH) by indigenous soil microorganisms, focusing on bioavailability and community responses. The cationic surfactant CTAB inhibited the biodegradation of phenanthrene within the whole tested dosage range by decreasing its bioavailability and adversely affecting soil microbial communities. Appropriate doses of SDBS (1000 mg/kg), Tween 80 (100, 1000 mg/kg) and rhamnolipid at all amendment levels promoted the transformation of phenanthrene from the very slow desorption fraction (Fvslow) to bioavailable fractions (rapid and slow desorption fractions, Frapid and Fslow), assessed via Tenax extraction. However, only Tween 80 and rhamnolipid at these doses significantly improved both the rates and extents of phenanthrene biodegradation by 22.1-204.3 and 38.4-76.7 %, respectively, while 1000 mg/kg SDBS had little effect on phenanthrene removal. This was because the inhibitory effects of anionic surfactant SDBS, especially at high doses, on the abundance, diversity and activity of soil microbial communities surpassed the bioavailability enhancement in dominating biodegradation. In contrast, the nonionic surfactant Tween 80 and biosurfactant rhamnolipid enhanced the bioavailability of phenanthrene for degradation and also that to specific degrading bacterial genera, which stimulated their growth and increased the abundance of the related nidA degradation gene. Moreover, they promoted the total microbial/bacterial biomass, community diversity and polyphenol oxidase activity by providing available substrates and nutrients. These findings contribute to the design of suitable surfactant types and dosages for mitigating the environmental risk of PAHs and simultaneously benefiting microbial ecology in soil through bioremediation.
Collapse
Affiliation(s)
- Meng Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Tianxin Duan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yaqi Luo
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Haiyun Zhang
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences; National Agricultural Experimental Station for Agricultural Environment in Fengxian, Key Laboratory of Low-carbon Green Agriculture in Southeastern China, Ministry of Agriculture and Rural Affairs, Shanghai 201403, China
| | - Wei Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Xilong Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jiangang Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, China; School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China
| |
Collapse
|
2
|
Christopher JM, Mohan M, Sridharan R, Somasundaram S, Ganesan S. Biosurfactant matrix for the environmental clean-up of dichlorophenol from aqueous medium and soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:64278-64294. [PMID: 34302601 DOI: 10.1007/s11356-021-15265-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Chlorophenols are used in many industries for their importance in preservation and herbicide preparation even though they possess high-risk factors. The prolonged usage of these compounds makes it very complicated to remove them from water and soil by conventional treatment methods. Biosurfactant are the promising structures with the ability to remove contaminants effectively. In this work, an attempt has been made to eliminate 2,4-dichlorophenol from soil and water using amino acid-enhanced cationic biosurfactant obtained from Bacillus axarquiensis. The produced BS has the ability to reduce the surface tension to 30.0 mN m-1. From RSM, the optimum conditions for the maximum production of BS were obtained at time 95 h; pH 7; temperature 35 °C, and concentration of substrate 5%. The BS was immobilized using a solid support matrix for the stability. The environmental factors such as temperature and pH have no effect on the matrix used and found to be viable even under extreme conditions. The removal efficiency was achieved in the range of 93-96% from water and 80-85% from soil. Additionally, the recyclability and reusability of the matrix were also analyzed, and it withstands up to 8 cycles. As a result, the significance of biosurfactant by enhancing the amino acid content was explored in remediation technology.
Collapse
Affiliation(s)
- Judia Magthalin Christopher
- Environmental Science Laboratory, Council of Scientific & Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai, Tamil Nadu, 600020, India
- Department of Leather Technology, Alagappa College of Technology, Anna University, Adyar, Chennai, Tamil Nadu, 600020, India
| | - Monica Mohan
- Environmental Science Laboratory, Council of Scientific & Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai, Tamil Nadu, 600020, India
| | - Rajalakshmi Sridharan
- Environmental Science Laboratory, Council of Scientific & Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai, Tamil Nadu, 600020, India
| | - Swarnalatha Somasundaram
- Environmental Science Laboratory, Council of Scientific & Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai, Tamil Nadu, 600020, India.
- Department of Leather Technology, Alagappa College of Technology, Anna University, Adyar, Chennai, Tamil Nadu, 600020, India.
| | - Sekaran Ganesan
- SRMIST, Ramapuram Campus, Chennai, Tamil Nadu, 600089, India
| |
Collapse
|
3
|
Liang Y, Zhang S, Li H, Mao X, Li Y, Xie X, Ren J, Li G, Lian R. Solubilization of polycyclic aromatic hydrocarbons by novel ester-bonded Gemini prolinol-based surfactant and its binary mixtures with conventional surfactants. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2019.1566924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yaqin Liang
- Department of Chemistry, Changzhi College, Changzhi, Shanxi, P. R. China
| | - Shuping Zhang
- Department of Chemistry, Changzhi College, Changzhi, Shanxi, P. R. China
| | - Hui Li
- Department of Chemistry, Changzhi College, Changzhi, Shanxi, P. R. China
| | - Xiaoming Mao
- Department of Chemistry, Changzhi College, Changzhi, Shanxi, P. R. China
| | - Yan Li
- Department of Chemistry, Changzhi College, Changzhi, Shanxi, P. R. China
| | - Xuanjie Xie
- Department of Chemistry, Changzhi College, Changzhi, Shanxi, P. R. China
| | - Jiaqi Ren
- Department of Chemistry, Changzhi College, Changzhi, Shanxi, P. R. China
| | - Gang Li
- Department of Chemistry, Changzhi College, Changzhi, Shanxi, P. R. China
| | - Rui Lian
- Department of Chemistry, Changzhi College, Changzhi, Shanxi, P. R. China
| |
Collapse
|
4
|
Biswas B, Warr LN, Hilder EF, Goswami N, Rahman MM, Churchman JG, Vasilev K, Pan G, Naidu R. Biocompatible functionalisation of nanoclays for improved environmental remediation. Chem Soc Rev 2019; 48:3740-3770. [PMID: 31206104 DOI: 10.1039/c8cs01019f] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Among the wide range of materials used for remediating environmental contaminants, modified and functionalised nanoclays show particular promise as advanced sorbents, improved dispersants, or biodegradation enhancers. However, many chemically modified nanoclay materials are incompatible with living organisms when they are used in natural systems with detrimental implications for ecosystem recovery. Here we critically review the pros and cons of functionalised nanoclays and provide new perspectives on the synthesis of environmentally friendly varieties. Particular focus is given to finding alternatives to conventional surfactants used in modified nanoclay products, and to exploring strategies in synthesising nanoclay-supported metal and metal oxide nanoparticles. A large number of promising nanoclay-based sorbents are yet to satisfy environmental biocompatibility in situ but opportunities are there to tailor them to produce "biocompatible" or regenerative/reusable materials.
Collapse
Affiliation(s)
- Bhabananda Biswas
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia. and Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ACT building, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Laurence N Warr
- Institute for Geography and Geology, University of Greifswald, D-17487 Greifswald, Germany
| | - Emily F Hilder
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.
| | - Nirmal Goswami
- School of Engineering, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Mohammad M Rahman
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ACT building, The University of Newcastle, Callaghan, NSW 2308, Australia. and Global Centre for Environmental Remediation, the University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Jock G Churchman
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Krasimir Vasilev
- School of Engineering, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Gang Pan
- Centre of Integrated Water-Energy-Food Studies, School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Southwell, NG25 0QF, UK
| | - Ravi Naidu
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), ACT building, The University of Newcastle, Callaghan, NSW 2308, Australia. and Global Centre for Environmental Remediation, the University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
5
|
Ni N, Wang F, Song Y, Jia M, Bian Y, Yang X, Gu C, Jiang X. Effect of cetyltrimethyl ammonium bromide on uptake of polycyclic aromatic hydrocarbons by carrots. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 213:513-519. [PMID: 29277355 DOI: 10.1016/j.jenvman.2017.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/06/2017] [Accepted: 12/09/2017] [Indexed: 06/07/2023]
Abstract
This is the first study investigating the effect of cationic surfactants on the mobility of polycyclic aromatic hydrocarbons (PAHs) in aged contaminated soils and on PAH bioaccumulation in tuberous vegetables. In an aerobic soil incubation experiment, 150 mg/kg cetyltrimethyl ammonium bromide (CTMAB) decreased the bioavailability of PAHs primarily via immobilization (by 13%). In a carrot pot experiment, the effectiveness of CTMAB to reduce PAH uptake by carrots decreased with time. Accordingly, the bioavailability of PAHs in the soil decreased in the first 90 days and then increased and remained stable until harvest. In the leaching test, the leaching loss of CTMAB (15%) was lower in soils treated with small amounts of CTMAB in several applications than it was in soils (24%) treated once with CTMAB. Therefore, CTMAB, when applied in appropriate doses via addition methods, can effectively reduce the environmental risk of PAH entering humans and livestock through the food chain.
Collapse
Affiliation(s)
- Ni Ni
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Fang Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Yang Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China.
| | - Mingyun Jia
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China; Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Yongrong Bian
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Xinlun Yang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Chenggang Gu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Xin Jiang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
6
|
Lamichhane S, Bal Krishna KC, Sarukkalige R. Surfactant-enhanced remediation of polycyclic aromatic hydrocarbons: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 199:46-61. [PMID: 28527375 DOI: 10.1016/j.jenvman.2017.05.037] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/04/2017] [Accepted: 05/10/2017] [Indexed: 06/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are toxic, mutagenic and carcinogenic organic compounds that are widely present in the environment. The bioremediation of PAHs is an economical and environmentally friendly remediation technique, but it is limited because PAHs have low water solubility and fewer bioavailable properties. The solubility and bioavailability of PAHs can be increased by using surfactants to reduce surface tension and interfacial tension; this method is called surfactant-enhanced remediation (SER). The SER of PAHs is influenced by many factors such as the type and concentration of surfactants, PAH hydrophobicity, temperature, pH, salinity, dissolved organic matter and microbial community. Furthermore, as mixed micelles have a synergistic effect on PAH solubilisation, selecting the optimum ratio of mixed surfactants leads to effective PAH remediation. Although the use of surfactants inhibits microbial activities in some cases, this could be avoided by choosing an optimum combination of surfactants and a proper microbial community for the targeted PAH(s), resulting in up to 99.99% PAH removal. This article reviews the literature on SER of PAHs, including surfactant types, the synergistic effect of mixed micelles on PAH removal, the impact of surfactants on the PAH biodegradation process, factors affecting the SER process, and the mechanisms of surfactant-enhanced solubilisation of PAHs.
Collapse
Affiliation(s)
- Shanti Lamichhane
- Department of Civil Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - K C Bal Krishna
- School of Computing Engineering and Mathematics, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Ranjan Sarukkalige
- Department of Civil Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| |
Collapse
|
7
|
Ni N, Wang F, Song Y, Shi R, Jia M, Bian Y, Jiang X. Effects of cationic surfactant on the bioaccumulation of polycyclic aromatic hydrocarbons in rice and the soil microbial community structure. RSC Adv 2017. [DOI: 10.1039/c7ra07124h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cetyltrimethylammonium bromide reduced the PAH bioaccumulation in rice from paddy soils and benefit the soil ecology in the short term.
Collapse
Affiliation(s)
- Ni Ni
- Key Laboratory of Soil Environment and Pollution Remediation
- Institute of Soil Science
- Chinese Academy of Sciences
- Nanjing 210008
- PR China
| | - Fang Wang
- Key Laboratory of Soil Environment and Pollution Remediation
- Institute of Soil Science
- Chinese Academy of Sciences
- Nanjing 210008
- PR China
| | - Yang Song
- Key Laboratory of Soil Environment and Pollution Remediation
- Institute of Soil Science
- Chinese Academy of Sciences
- Nanjing 210008
- PR China
| | - Renyong Shi
- Key Laboratory of Soil Environment and Pollution Remediation
- Institute of Soil Science
- Chinese Academy of Sciences
- Nanjing 210008
- PR China
| | - Mingyun Jia
- Key Laboratory of Soil Environment and Pollution Remediation
- Institute of Soil Science
- Chinese Academy of Sciences
- Nanjing 210008
- PR China
| | - Yongrong Bian
- Key Laboratory of Soil Environment and Pollution Remediation
- Institute of Soil Science
- Chinese Academy of Sciences
- Nanjing 210008
- PR China
| | - Xin Jiang
- Key Laboratory of Soil Environment and Pollution Remediation
- Institute of Soil Science
- Chinese Academy of Sciences
- Nanjing 210008
- PR China
| |
Collapse
|