1
|
Janmanee R, Sriwichai S. Development of an Electrochemical Biosensor Based on Polypyrrole-3-carboxylic Acid/Polypyrrole/Au Nanoparticle Composites for Detection of Dopamine. Polymers (Basel) 2025; 17:754. [PMID: 40292600 PMCID: PMC11944982 DOI: 10.3390/polym17060754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/04/2025] [Accepted: 03/11/2025] [Indexed: 04/30/2025] Open
Abstract
Dopamine (DA) is a neurotransmitter that works in the brain. It plays several important roles in executive functions, including motor control, memory, mood, motivation, and reward. DA imbalances are associated with diseases in the nervous system such as Parkinson's disease, schizophrenia, Alzheimer's disease, and attention deficit hyperactivity disorder (ADHD). Therefore, the development of a biosensor for the detection of precise amounts of DA is of great interest. In this research, polypyrrole-3-carboxylic acid/polypyrrole/gold nanoparticle (PP3C/PPy/AuNPs) composites were developed for the electrochemical detection of DA. Firstly, a PP3C/PPy/AuNPs composite thin film was synthesized by electropolymerization on a fluorine-doped tin oxide (FTO)-coated glass substrate. Subsequently, cyclic voltammetry (CV), scanning electron microscopy (SEM), and differential pulse voltammetry (DPV) were used for the characterization and study of the efficiency of the obtained conducting polymer-gold nanoparticle composite thin film for the detection of DA. The proposed electrochemical sensor showed good sensitivity and selectivity for the detection of DA with a wide detection linear range from 5 to 180 μM (R2 = 0.9913). The limit of detection (LOD) and limit of quantitation (LOQ) values were 9.72 nM and 0.032 μM, respectively. Therefore, it can be concluded that the electrochemically fabricated PP3C/PPy/AuNPs composite thin film can be applied as an electrochemical biosensor for the detection of dopamine for the early diagnosis of various neurological disorders in the future.
Collapse
Affiliation(s)
- Rapiphun Janmanee
- Chemistry Program, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok 65000, Thailand
| | - Saengrawee Sriwichai
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
Ravariu C. From Enzymatic Dopamine Biosensors to OECT Biosensors of Dopamine. BIOSENSORS 2023; 13:806. [PMID: 37622892 PMCID: PMC10452593 DOI: 10.3390/bios13080806] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
Neurotransmitters are an important category of substances used inside the nervous system, whose detection with biosensors has been seriously addressed in the last decades. Dopamine, a neurotransmitter from the catecholamine family, was recently discovered to have implications for cardiac arrest or muscle contractions. In addition to having many other neuro-psychiatric implications, dopamine can be detected in blood, urine, and sweat. This review highlights the importance of biosensors as influential tools for dopamine recognition. The first part of this article is related to an introduction to biosensors for neurotransmitters, with a focus on dopamine. The regular methods in their detection are expensive and require high expertise personnel. A major direction of evolution of these biosensors has expanded with the integration of active biological materials suitable for molecular recognition near electronic devices. Secondly, for dopamine in particular, the miniaturized biosensors offer excellent sensitivity and specificity and offer cheaper detection than conventional spectrometry, while their linear detection ranges from the last years fall exactly on the clinical intervals. Thirdly, the applications of novel nanomaterials and biomaterials to these biosensors are discussed. Older generations, metabolism-based or enzymatic biosensors, could not detect concentrations below the micro-molar range. But new generations of biosensors combine aptamer receptors and organic electrochemical transistors, OECTs, as transducers. They have pushed the detection limit to the pico-molar and even femto-molar ranges, which fully correspond to the usual ranges of clinical detection of human dopamine in body humors that cover 0.1 ÷ 10 nM. In addition, if ten years ago the use of natural dopamine receptors on cell membranes seemed impossible for biosensors, the actual technology allows co-integrate transistors and vesicles with natural receptors of dopamine, like G protein-coupled receptors. The technology is still complicated, but the uni-molecular detection selectivity is promising.
Collapse
Affiliation(s)
- Cristian Ravariu
- Biodevices and Nano-Electronics of Cell Group, Department of Electronic Devices Circuits and Architectures, Polytechnic University of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- EduSciArt SRL, Iovita 2, 050686 Bucharest, Romania
| |
Collapse
|
3
|
A photoelectrochemical sensor for ultrasensitive dopamine detection based on composites of BiOI and Au-Ag nanoparticles. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
4
|
Loh DM, Nava M, Nocera DG. Polypyrrole-Silicon Nanowire Arrays for Controlled Intracellular Cargo Delivery. NANO LETTERS 2022; 22:366-371. [PMID: 34965139 DOI: 10.1021/acs.nanolett.1c04033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Intracellular cargo delivery is a critical and challenging step in controlling cell states. Silicon nanowire (NW) arrays have emerged as a powerful platform for accessing the intracellular space through a combination of their nanoscale dimensions and electrical properties. Here, we develop and characterize a conductive polypyrrole (PPy)-NW device for temporally controlled intracellular delivery. Fluorescent cargos, doped in electroresponsive PPy matrices at wire tips as well as entire NW arrays, are released with an applied reducing potential. Intracellular delivery into endothelial cells from PPy-Si substrates demonstrated comparable kinetics to solution-based delivery methods while requiring an order of magnitude less cargo loading. This hybrid polymer-semiconductor platform extends methods available for intracellular delivery and links electrical signaling from artificial systems with living molecular transduction.
Collapse
Affiliation(s)
- Daniel M Loh
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Matthew Nava
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
5
|
Yagati AK, Behrent A, Tomanek V, Chavan SG, Go A, Park SR, Jin Z, Baeumner AJ, Lee MH. Polypyrrole-palladium nanocomposite as a high-efficiency transducer for thrombin detection with liposomes as a label. Anal Bioanal Chem 2021; 414:3205-3217. [PMID: 34617153 DOI: 10.1007/s00216-021-03673-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/25/2022]
Abstract
Sensitive and selective determination of protein biomarkers with high accuracy often remains a great challenge due to their existence in the human body at an exceptionally low concentration level. Therefore, sensing mechanisms that are easy to use, simple, and capable of accurate quantification of analyte are still in development to detect biomarkers at a low concentration level. To meet this end, we demonstrated a methodology to detect thrombin in serum at low concentration levels using polypyrrole (PPy)-palladium (Pd)nanoparticle-based hybrid transducers using liposomes encapsulated redox marker as a label. The morphology of Ppy-Pd composites was characterized by scanning electron microscopy, and the hybrid structure provided excellent binding and detection platform for thrombin detection in both buffer and serum solutions. For quantitative measurement of thrombin in PBS and serum, the change in current was monitored using differential pulse voltammetry, and the calculated limit of quantification (LOQ) and limit of detection (LOD) for the linear segment (0.1-1000 nM of thrombin) were 1.1 pM and 0.3 pM, in serum, respectively. The sensors also exhibited good stability and excellent selectivity towards the detection of thrombin, and thus make it a strong candidate for adopting its sensing applications in biomarker detection technologies.
Collapse
Affiliation(s)
- Ajay Kumar Yagati
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-Gu, 06974, Seoul, Republic of Korea
- Institute of Analytical Chemistry, Chemo-and Biosensors, Faculty of Chemistry and Pharmacy, University of Regensburg, 31, 93053, Regensburg, Germany
| | - Arne Behrent
- Institute of Analytical Chemistry, Chemo-and Biosensors, Faculty of Chemistry and Pharmacy, University of Regensburg, 31, 93053, Regensburg, Germany
| | - Vanessa Tomanek
- Institute of Analytical Chemistry, Chemo-and Biosensors, Faculty of Chemistry and Pharmacy, University of Regensburg, 31, 93053, Regensburg, Germany
| | - Sachin Ganpat Chavan
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-Gu, 06974, Seoul, Republic of Korea
| | - Anna Go
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-Gu, 06974, Seoul, Republic of Korea
| | - Sung Ryul Park
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-Gu, 06974, Seoul, Republic of Korea
| | - Zhengzhi Jin
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-Gu, 06974, Seoul, Republic of Korea
| | - Antje J Baeumner
- Institute of Analytical Chemistry, Chemo-and Biosensors, Faculty of Chemistry and Pharmacy, University of Regensburg, 31, 93053, Regensburg, Germany.
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-Gu, 06974, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Polypyrrole-coated carbon fibre electrodes for paracetamol and clozapine drug sensing. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Madhurantakam S, Karnam JB, Brabazon D, Takai M, Ahad IU, Balaguru Rayappan JB, Krishnan UM. "Nano": An Emerging Avenue in Electrochemical Detection of Neurotransmitters. ACS Chem Neurosci 2020; 11:4024-4047. [PMID: 33285063 DOI: 10.1021/acschemneuro.0c00355] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The growing importance of nanomaterials toward the detection of neurotransmitter molecules has been chronicled in this review. Neurotransmitters (NTs) are chemicals that serve as messengers in synaptic transmission and are key players in brain functions. Abnormal levels of NTs are associated with numerous psychotic and neurodegenerative diseases. Therefore, their sensitive and robust detection is of great significance in clinical diagnostics. For more than three decades, electrochemical sensors have made a mark toward clinical detection of NTs. The superiority of these electrochemical sensors lies in their ability to enable sensitive, simple, rapid, and selective determination of analyte molecules while remaining relatively inexpensive. Additionally, these sensors are capable of being integrated in robust, portable, and miniaturized devices to establish point-of-care diagnostic platforms. Nanomaterials have emerged as promising materials with significant implications for electrochemical sensing due to their inherent capability to achieve high surface coverage, superior sensitivity, and rapid response in addition to simple device architecture and miniaturization. Considering the enormous significance of the levels of NTs in biological systems and the advances in sensing ushered in with the integration of nanotechnology in electrochemistry, the analysis of NTs by employing nanomaterials as interface materials in various matrices has emerged as an active area of research. This review explores the advancements made in the field of electrochemical sensors for the sensitive and selective determination of NTs which have been described in the past two decades with a distinctive focus on extremely innovative attributes introduced by nanotechnology.
Collapse
Affiliation(s)
- Sasya Madhurantakam
- Department of Molecular Physiology, Niigata University School of Medicine, Niigata 951-8510, Japan
| | - Jayanth Babu Karnam
- School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur 613401, India
- Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613401, India
| | - Dermot Brabazon
- I-Form, Advanced Manufacturing Research Centre, Advanced Processing Technology Research Centre, Dublin City University, Dublin, Ireland
| | - Madoka Takai
- Department of Bioengineering, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Inam Ul Ahad
- I-Form, Advanced Manufacturing Research Centre, Advanced Processing Technology Research Centre, Dublin City University, Dublin, Ireland
| | | | - Uma Maheswari Krishnan
- Centre for Nanotechnology and Advanced Biomaterials (CeNTAB), SASTRA Deemed University, Thanjavur 613401, India
- School of Arts, Science & Humanities, SASTRA Deemed University, Thanjavur 613401, India
| |
Collapse
|
8
|
Bae J, Hwang Y, Park SH, Park SJ, Lee J, Kim HJ, Jang A, Park S, Kwon OS. An elaborate sensor system based on conducting polymer-oligosaccharides in hydrogel and the formation of inclusion complexes. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.07.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
High-Performance Conducting Polymer Nanotube-based Liquid-Ion Gated Field-Effect Transistor Aptasensor for Dopamine Exocytosis. Sci Rep 2020; 10:3772. [PMID: 32111933 PMCID: PMC7048782 DOI: 10.1038/s41598-020-60715-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 02/14/2020] [Indexed: 01/22/2023] Open
Abstract
In this study, ultrasensitive and precise detection of a representative brain hormone, dopamine (DA), was demonstrated using functional conducting polymer nanotubes modified with aptamers. A high-performance aptasensor was composed of interdigitated microelectrodes (IMEs), carboxylated polypyrrole nanotubes (CPNTs) and DA-specific aptamers. The biosensors were constructed by sequential conjugation of CPNTs and aptamer molecules on the IMEs, and the substrate was integrated into a liquid-ion gating system surrounded by pH 7.4 buffer as an electrolyte. To confirm DA exocytosis based on aptasensors, DA sensitivity and selectivity were monitored using liquid-ion gated field-effect transistors (FETs). The minimum detection level (MDL; 100 pM) of the aptasensors was determined, and their MDL was optimized by controlling the diameter of the CPNTs owing to their different capacities for aptamer introduction. The MDL of CPNT aptasensors is sufficient for discriminating between healthy and unhealthy individuals because the total DA concentration in the blood of normal person is generally determined to be ca. 0.5 to 6.2 ng/mL (3.9 to 40.5 nM) by high-performance liquid chromatography (HPLC) (this information was obtained from a guidebook “Evidence-Based Medicine 2018 SCL “ which was published by Seoul Clinical Laboratory). The CPNTs with the smaller diameters (CPNT2: ca. 120 nm) showed 100 times higher sensitivity and selectivity than the wider CPNTs (CPNT1: ca. 200 nm). Moreover, the aptasensors based on CPNTs had excellent DA discrimination in the presence of various neurotransmitters. Based on the excellent sensing properties of these aptasensors, the DA levels of exogeneous DA samples that were prepared from PC12 cells by a DA release assay were successfully measured by DA kits, and the aptasensor sensing properties were compared to those of standard DA reagents. Finally, the real-time response values to the various exogeneous DA release levels were similar to those of a standard DA aptasensor. Therefore, CPNT-based aptasensors provide efficient and rapid DA screening for neuron-mediated genetic diseases such as Parkinson’s disease.
Collapse
|
10
|
Liu YC, Hsu WF, Wu TM. Electrochemical determination of dopamine using a conductive polypyrrole/carbon-coated mesoporous silica composite electrode. J APPL ELECTROCHEM 2020. [DOI: 10.1007/s10800-019-01391-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
11
|
Chiang MH, Hong BD, Wang TP, Lin YM, Lee CL. Copper-induced synthesis of palladium/copper popcorn nanoparticles as sensors for differential pulse voltammetric determination of dopamine. Mikrochim Acta 2019; 186:718. [PMID: 31654134 DOI: 10.1007/s00604-019-3866-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/20/2019] [Indexed: 11/25/2022]
Abstract
Popcorn nanoparticles (pop-NPs) consisting of a Pd/Cu alloy were synthesized using a seed-mediated growth method. The Cu and Pd atoms were co-deposited on a cubic Pd seed to reduce the energy of fault stacking. The same synthesis method with a reduced volume of the Cu(II) salt leads to Pd/Cu alloy nanoparticles with branches (br-NPs). Large Pd nanocubes (Pd NCs) were prepared via epitaxial deposition and using tetrachloropalladate (PdCl42-) only. The high-resolution TEM analysis results show the pop-NPs and br-NPs to be single crystals with [Formula: see text] and [Formula: see text] planes, respectively. The results of X-ray photoelectron spectroscopy and cyclic voltammetry measurements corroborated that Pd is enriched on both surfaces. The materials were placed on a glassy carbon electrode to obtain a differential pulse voltammetric sensor for dopamine (DA). The electrochemical sensitivities are (a) 1.55 μA μM-1 cm-2 for the Pd/Cu pop-NP sensor in its linear range (15-300 μM), (b) 1.17 μA μM-1 cm-2 for the br-NP sensor in the linear range (15-200 μM), and (c) 0.97 μA μM-1 cm-2 for the Pd NC sensor in its linear range (15-100 μM). The best working potentials are near 0.10 V (vs. SCE) for all three sensors. The pop-NP-based sensor performs particularly well due to it selectivity over ascorbic and uric acid. Graphical abstract Pd/Cu popcorn nanoparticles (pop-NPs), nanoparticles with branches (br-NPs), and Pd nanocubes (NCs) were synthesized using seed-mediated growth methods and directly used on glassy carbon electrodes for non-enzymatic sensing of dopamine.
Collapse
Affiliation(s)
- Ming-Hung Chiang
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 807, Taiwan
| | - Bang-De Hong
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 807, Taiwan
| | - Tzu-Pei Wang
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 807, Taiwan
| | - Yu-Min Lin
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 807, Taiwan
| | - Chien-Liang Lee
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 807, Taiwan.
| |
Collapse
|
12
|
Siddiqui S, Shawuti S, Sirajuddin, Niazi JH, Qureshi A. l-Cysteine-Mediated Self-Assembled Ag–Au Nanoparticles As Fractal Patterns with Bowling-Alley-like Hollow Arrays for Electrochemical Sensing of Dopamine. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Samia Siddiqui
- Sabanci University SUNUM Nanotechnology Research Centre, TR-34956 Istanbul, Turkey
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan
| | - Shalima Shawuti
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle 34956, Tuzla, Istanbul, Turkey
| | - Sirajuddin
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro 76080, Pakistan
| | - Javed H. Niazi
- Sabanci University SUNUM Nanotechnology Research Centre, TR-34956 Istanbul, Turkey
| | - Anjum Qureshi
- Sabanci University SUNUM Nanotechnology Research Centre, TR-34956 Istanbul, Turkey
| |
Collapse
|
13
|
MOF-derived N-doped nanoporous carbon framework embedded with Pt NPs for sensitive monitoring of endogenous dopamine release. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.03.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
14
|
Fatani EJ, Almutairi HH, Alharbi AO, Alnakhli YO, Divakar DD, Muzaheed, Alkheraif AA, Khan AA. In vitro assessment of stainless steel orthodontic brackets coated with titanium oxide mixed Ag for anti-adherent and antibacterial properties against Streptococcus mutans and Porphyromonas gingivalis. Microb Pathog 2017; 112:190-194. [DOI: 10.1016/j.micpath.2017.09.052] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/18/2017] [Accepted: 09/26/2017] [Indexed: 11/30/2022]
|
15
|
Vellaichamy B, Periakaruppan P, Paulmony T. Evaluation of a New Biosensor Based on in Situ Synthesized PPy-Ag-PVP Nanohybrid for Selective Detection of Dopamine. J Phys Chem B 2017; 121:1118-1127. [DOI: 10.1021/acs.jpcb.6b11225] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | | | - Tharmaraj Paulmony
- Department of Chemistry, Thiagarajar College, Madurai 625 009, Tamil Nadu, India
| |
Collapse
|