1
|
Yang Y, Chi J, Wang S, Elbarbary A, Zhang Y, Jin J. Enzymatic Esterification of Functional Lipids for Specialty Fats: 1,3-Dipalmitoylglycerol and 1,3-Distearoylglycerol. Molecules 2025; 30:1328. [PMID: 40142103 PMCID: PMC11946563 DOI: 10.3390/molecules30061328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
High-melting point 1,3-diacylglycerols not only provide health benefits, but are also suitable for manufacture of foods containing various specialty fats. It is difficult to prepare such high-melting point diacylglycerols, as the activities of specific enzymes will severely reduce at their melting points. In the present study, a combined technique was developed to prepare 1,3-dipalmitoylglycerol (1,3-DPG) and 1,3-distearoylglycerol (1,3-DSG) using selective esterification, molecular distillation, and solvent fractionation. Lipozyme TL IM was suitable for use as the optimal enzyme to maintain relatively high activity levels at esterification temperatures of 73-75 °C. 1,3-DAG/(DAG + TAG) was selected as the most important index to monitor the esterification and to evaluate the synthesized fats. The obtained 1,3-DPG and 1,3-DSG showed high purities, at more than 83%, and possessed hard attributes at room temperature. Both 1,3-DPG and 1,3-DSG exhibited fat crystals with β' and β crystals. Needle-like and rod-like crystals were observed at 5-25 °C for 1,3-DPG, and closely packed feather-like crystals were found at 5-20 °C for 1,3-DSG, indicating their multiple abilities in modifying the crystallization stabilization of the fat matrix during food processing.
Collapse
Affiliation(s)
- Yuhuang Yang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Juanjuan Chi
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai 200137, China
| | - Shengyuan Wang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Abdelaziz Elbarbary
- Dairy Science Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - Yafei Zhang
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai 200137, China
| | - Jun Jin
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Food Laboratory of Zhongyuan, Luohe 462300, China
| |
Collapse
|
2
|
Feng K, Duan Y, Zhang H, Xiao J, Ho CT, Huang Q, Cao Y. Influence of 1,3-diacylglycerol on physicochemical and digestion properties of nanoemulsions and its enhancement of encapsulation and bioaccessibility of hydrophobic nobiletin. Food Funct 2023; 14:6212-6225. [PMID: 37345830 DOI: 10.1039/d3fo00543g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
Lipid-based delivery systems are commonly used to encapsulate hydrophobic bioactive compounds for enhancing their bioaccessibility and bioavailability, especially for triacylglycerol (TAG) oil-based delivery systems. However, studies on the development of 1,3-diacylglycerol (DAG) oil-based delivery systems are rather limited. Herein, the influence of 1,3-DAG oil as a carrier oil on the properties of nanoemulsions and the bioaccessibility of encapsulated hydrophobic nobiletin (NOB) were investigated. High-purity 1,3-DAG (over 93% pure) was prepared by a combination of enzymatic esterification and ethanol crystallization. 1,3-DAG oil as a carrier oil could be used to formulate nanoemulsions with smaller droplet size, narrower size distribution and similar stability compared to TAG oil. Importantly, 1,3-DAG oil could efficiently encapsulate high-loading NOB (1.45 mg g-1) in nanoemulsions and significantly improve the bioaccessibility of NOB (above 80%), which is attributable to its massive lipolysis and higher encapsulation capacity than TAG oil. Moreover, the addition of the 1,3-DAG component in TAG oil significantly improved the properties of nanoemulsions and the loading and bioaccessibility of NOB, especially as the 1,3-DAG content was not less than 50%. The structure of lipids (DAG versus TAG) influenced the nanoemulsion properties and the bioaccessibility of encapsulated NOB. Based on the good properties of 1,3-DAG oil coupled with its health benefits, 1,3-DAG oil-based nanoemulsion delivery systems have great prospects for improving and extending emulsion properties and bioactivity as well as bioaccessibility enhancement.
Collapse
Affiliation(s)
- Konglong Feng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Yashan Duan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Huiting Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, USA.
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, USA.
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
3
|
Zhou D, Zhao M, Wang J, Faiza M, Chen X, Cui J, Liu N, Li D. A novel and efficient method for punicic acid-enriched diacylglycerol preparation: Enzymatic ethanolysis of pomegranate seed oil catalyzed by Lipozyme 435. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Cheng X, Huang Y, Yang Z, Wang T, Wang X. Enrichment of Palmitoleic Acid by a Combination of Two-step Solvent Crystallization and Molecular Distillation. J Oleo Sci 2021; 70:599-606. [PMID: 33952786 DOI: 10.5650/jos.ess20273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Palmitoleic acid shows a variety of beneficial properties to human health. In this study, enrichment of palmitoleic acid from sea buckthorn pulp oil by two-step solvent crystallization and molecular distillation was investigated. Sea buckthorn pulp oil was first converted to its corresponding mixed fatty acids (SPOMFs) containing 27.17% palmitoleic acid. Subsequently, the effects of various factors on crystallization (i.e., crystallization temperature, type of solvent, ratio of SPOMFs to solvent (w/v), crystallization time) and molecular distillation (distillation temperature) were assessed on a 5-g scale. It was found that optimal primary crystallization conditions were a 1:15 ratio of SPOMFs to methanol (w/v), -20°C and 12 h. Secondary crystallization conditions were set to a 1:4 ratio of methanol to palmitoleic acid product obtained from the first step crystallization to methanol (w/v), -40°C and 6 h. For further purification of palmitoleic acid by molecular distillation, the optimal distillation temperature was determined to be 100°C. After purification by crystallization and molecular distillation under the optimal conditions, the final product consisted of 54.18% palmitoleic acid with an overall yield of 56.31%. This method has great potential for adoption by the food and medical industries for the preparation of palmitoleic acid concentrate for nutritional studies.
Collapse
Affiliation(s)
- Xinyi Cheng
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University
| | - Yaqi Huang
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University
| | - Zhuangzhuang Yang
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University
| | - Tong Wang
- Department of Food Science, The University of Tennessee
| | - Xiaosan Wang
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University
| |
Collapse
|
5
|
Huang Z, Cao Z, Guo Z, Chen L, Wang Z, Sui X, Jiang L. Lipase catalysis of α-linolenic acid-rich medium- and long-chain triacylglycerols from perilla oil and medium-chain triacylglycerols with reduced by-products. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4565-4574. [PMID: 32419135 DOI: 10.1002/jsfa.10515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/10/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Medium- and long- chain triacylglycerols (MLCTs) are functional structural lipids that can provide the human body with essential fatty acids and a faster energy supply. This study aimed to prepare MLCTs rich in α-linolenic by enzymatic interesterification of perilla oil and medium-chain triacylglycerols (MCTs), catalyzed by Lipozyme RM IM, Lipozyme TL IM, Lipozyme 435, and Novozyme 435 respectively. RESULTS The effects of lipase loading, concentration of MCTs, reaction temperature, and reaction time on the yield of MLCTs were investigated. It was found that the reaction achieved more than a 70% yield of MLCTs in triacylglycerols under the conditions of 400 g kg-1 MCTs and 60 g kg-1 lipase loading after equilibrium. A novel two-stage deodorization was also applied to purify the interesterification products. The triacylglycerols reach over 97% purity in the products with significant removal (P < 0.05) of the free fatty acids, and the trans fatty acids were strictly controlled at below 1%. There was more than 40% α-linolenic in the purified products, with long-chain fatty acids mostly occupying the desired sn-2 position in acylglycerols, which are more active in hydrolysis. CONCLUSION A series of novel α-linolenic acid-rich medium- and long-chain triacylglycerols was prepared. Under appropriate reaction conditions, the yield of MLCTs in triacylglycerols was above 70%. A novel two-stage deodorization can be used to promote the elimination of free fatty acids and limit the generation of trans fatty acids. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhaoxian Huang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Zhenyu Cao
- Beijing Key Laboratory of Nutrition & Health and Food Safety, COFCO Nutrition & Health Research Institute, Beijing, China
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Liang Chen
- Jiangsu Yiming Biological Technology Co., Ltd, Taizhou, China
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin, China
- National Research Center of Soybean Engineering and Technology, Harbin, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, China
- National Research Center of Soybean Engineering and Technology, Harbin, China
| |
Collapse
|
6
|
Wang S, Lee WJ, Wang Y, Tan CP, Lai OM, Wang Y. Effect of Purification Methods on the Physicochemical and Thermodynamic Properties and Crystallization Kinetics of Medium-Chain, Medium-Long-Chain, and Long-Chain Diacylglycerols. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8391-8403. [PMID: 32511921 DOI: 10.1021/acs.jafc.0c01346] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Medium-chain diacylglycerol (MCD), medium-long-chain diacylglycerol (MLCD), and long-chain diacylglycerol (LCD) were prepared through enzymatic esterification using different conditions at temperatures of 55-70 °C and reaction times of 1.5-5 h and in the presence of 5-6% Novozym 435. Subsequently, purification was performed using three different techniques, namely, molecular distillation (MD), deodorization (DO), and silica gel column chromatography (SGCC). Variations in terms of the physicochemical and thermodynamic properties, crystallization properties, and kinetics of the diacylglycerols (DAGs) before and after purification were determined. Irrespective of the DAG chain lengths, SGCC was able to produce samples with high DAG purity (96-99 wt %), followed by MD (58-79 wt %) and DO (39-59 wt %). A higher 1,3-DAG/1,2-DAG ratio was recorded for all samples, with the highest ratio recorded for SGCC purified samples. Regardless of the purification techniques used, the solid fat content (SFC) profiles of crude samples with steep curves were altered post-purification, showing a gradual increment in SFC along with increasing temperature. Modification of the Avrami constant and coefficient suggested the modification of the crystal growth mechanism post-purification. Crystallization and melting temperatures of products with a higher DAG purity were shifted to a higher temperature region. Variations were also reflected in terms of the crystal polymorphism, whereby the α and β' crystals transitioned into the more stable β form in purified samples accompanied by modification in the microstructures and crystal sizes. However, there was insignificant change in the morphology of MLCD crystal after purification, except for the decrease in crystal sizes. In conclusion, synthesis of MCD, MLCD, and LCD comprising different DAG purities had distinctive SFC profiles, thermodynamic properties, crystallization kinetics, and crystal morphologies, which can be further incorporated into the preparation of a variety of fat products to obtain end products with desired characteristics.
Collapse
Affiliation(s)
- Shaolin Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
- Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou, Guangdong 510632, People's Republic of China
| | - Wan Jun Lee
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
- Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou, Guangdong 510632, People's Republic of China
| | - Ying Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
- Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou, Guangdong 510632, People's Republic of China
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, Jiangxi 330022, People's Republic of China
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43300 Serdang, Selangor, Malaysia
| | - Oi Ming Lai
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43300 Serdang, Selangor, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, 43300 Serdang, Selangor, Malaysia
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
- Guangdong International Joint Research Center for Oilseed Biorefinery, Nutrition and Safety, Guangzhou, Guangdong 510632, People's Republic of China
| |
Collapse
|
7
|
Lee WJ, Zhang Z, Lai OM, Tan CP, Wang Y. Diacylglycerol in food industry: Synthesis methods, functionalities, health benefits, potential risks and drawbacks. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.12.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
8
|
Lee YY, Tang TK, Phuah ET, Tan CP, Wang Y, Li Y, Cheong LZ, Lai OM. Production, safety, health effects and applications of diacylglycerol functional oil in food systems: a review. Crit Rev Food Sci Nutr 2019; 60:2509-2525. [DOI: 10.1080/10408398.2019.1650001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yee-Ying Lee
- School of Science, Monash University, Bandar Sunway, Selangor, Malaysia
- Monash Industry Palm Oil Research and Education Platfrom, Monash University, Bandar Sunway, Selangor, Malaysia
| | - Teck-Kim Tang
- International Joint Laboratory on Plant Oils Processing and Safety (POPS), Jinan University- Univesiti Putra Malaysia, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Eng-Tong Phuah
- Department and Agricultural and Food Science, Universiti Tunku Abdul Rahman, Kampar, Perak, Malaysia
| | - Chin-Ping Tan
- International Joint Laboratory on Plant Oils Processing and Safety (POPS) Jinan University- Univesiti Putra Malaysia, Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yong Wang
- International Joint Laboratory on Plant Oils Processing and Safety (POPS) Jinan University- Universiti Putra Malaysia, Department of Food Science and Engineering, Jinan University, Guangzhou, P.R. China
| | - Ying Li
- International Joint Laboratory on Plant Oils Processing and Safety (POPS) Jinan University- Universiti Putra Malaysia, Department of Food Science and Engineering, Jinan University, Guangzhou, P.R. China
| | - Ling-Zhi Cheong
- Department of Food Science, School of Marine Science, Ningbo University, Fenghua Road 818, Ningbo, P.R. China
| | - Oi-Ming Lai
- International Joint Laboratory on Plant Oils Processing and Safety (POPS), Jinan University- Univesiti Putra Malaysia, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|