1
|
Linn JD, Rodriguez FA, Calabrese MA. Cosolvent incorporation modulates the thermal and structural response of PNIPAM/silyl methacrylate copolymers. SOFT MATTER 2024; 20:3322-3336. [PMID: 38536224 PMCID: PMC11095640 DOI: 10.1039/d4sm00246f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Polymers functionalized with inorganic silane groups have been used in wide-ranging applications due to the silane reactivity, which enables formation of covalently-crosslinked polymeric structures. Utilizing stimuli-responsive polymers in these hybrid systems can lead to smart and tunable behavior for sensing, drug delivery, and optical coatings. Previously, the thermoresponsive polymer poly(N-isopropyl acrylamide) (PNIPAM) functionalized with 3-(trimethoxysilyl)propyl methacrylate (TMA) demonstrated unique aqueous self-assembly and optical responses following temperature elevation. Here, we investigate how cosolvent addition, particularly ethanol and N,N-dimethyl formamide (DMF), impacts these transition temperatures, optical clouding, and structure formation in NIPAM/TMA copolymers. Versus purely aqueous systems, these solvent mixtures can introduce additional phase transitions and can alter the two-phase region boundaries based on temperature and solvent composition. Interestingly, TMA incorporation strongly alters phase boundaries in the water-rich regime for DMF-containing systems but not for ethanol-containing systems. Cosolvent species and content also alter the aggregation and assembly of NIPAM/TMA copolymers, but these effects depend on polymer architecture. For example, localizing the TMA towards one chain end in 'blocky' domains leads to formation of uniform micelles with narrow dispersities above the cloud point for certain solvent compositions. In contrast, polydisperse aggregates form in random copolymer and PNIPAM homopolymer solutions - the size of which depends on solvent composition. The resulting optical responses and thermoreversibility also depend strongly on cosolvent content and copolymer architecture. Cosolvent incorporation thus increases the versatility of inorganic-functionalized responsive polymers for diverse applications by providing a simple way to tune the structure size and optical response.
Collapse
Affiliation(s)
- Jason D Linn
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Fabian A Rodriguez
- Department of Mechanical Engineering, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Michelle A Calabrese
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
2
|
Khamis F, Hegab HM, Banat F, Arafat HA, Hasan SW. Comprehensive review on pH and temperature-responsive polymeric adsorbents: Mechanisms, equilibrium, kinetics, and thermodynamics of adsorption processes for heavy metals and organic dyes. CHEMOSPHERE 2024; 349:140801. [PMID: 38029934 DOI: 10.1016/j.chemosphere.2023.140801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Wastewater treatment technologies have been developed to address the health and environmental risks associated with toxic and cancer-causing dyes and heavy metals found in industrial waste. The most commonly used method to mitigate and treat such effluents is adsorption, which is favored for its high efficiency, low costs, and ease of operation. However, traditional adsorbents have limitations in terms of regeneration and selectivity compared to smart adsorbents. Smart polymeric adsorbents, on the other hand, can undergo physical and chemical changes in response to external factors like temperature and pH, enabling a selective adsorption process. These adsorbents can be easily regenerated and reused with minimal generation of secondary pollutants during desorption. The unique properties acquired by stimuli-responsive adsorbents have encouraged researchers to investigate their potential for the selective and efficient removal of organic dyes and heavy metals. This comprehensive review focuses on two common stimuli, pH and temperature, discussing the fabrication methods and characteristics of smart adsorbents responsive to these factors. It also provides an overview of the mechanisms, isotherms, kinetics, and thermodynamics of the adsorption process for each type of stimuli-responsive adsorbent. Finally, the review concludes with discussions on future perspectives and considerations.
Collapse
Affiliation(s)
- Fatema Khamis
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical and Petroleum Engineering, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Hanaa M Hegab
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical and Petroleum Engineering, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical and Petroleum Engineering, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Hassan A Arafat
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical and Petroleum Engineering, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates; Research & Innovation Center for Graphene and 2D Materials (RIC2D), Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical and Petroleum Engineering, Khalifa University, PO Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
3
|
Tan P, Jiang Y, Wu Q, Gu C, Qi S, Zhang Q, Liu X, Sun L. Light-responsive adsorbents with tunable adsorbent–adsorbate interactions for selective CO2 capture. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
4
|
Jiang Y, Tan P, Liu XQ, Sun LB. Process-Oriented Smart Adsorbents: Tailoring the Properties Dynamically as Demanded by Adsorption/Desorption. Acc Chem Res 2022; 55:75-86. [PMID: 34918905 DOI: 10.1021/acs.accounts.1c00555] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adsorptive separation plays a critical role in chemical, food, pharmaceutical, and environmental industries, as well as in many other industrial areas. Adsorbents are most important for adsorptive separation and undergo adsorption and desorption processes to accomplish the specific tasks of separation. In the process of adsorption, adsorbates diffuse into the pore spaces of adsorbents through pore openings, adsorb on active sites via physical or chemical interactions, and subsequently are regenerated by temperature or pressure swings during desorption. In the process of adsorption and desorption, however, the requirements for pore structures and surface properties of adsorbents are different. In general, adsorbents with small pore openings can realize selective adsorption and do not favor desorption; on the other hand, adsorbents with large pore openings are efficient in desorption but at the expense of adsorption selectivity. Remarkably, active sites possessing strong interactions with adsorbates contribute to high selectivity for adsorption, while desorption becomes difficult. The trade-off between adsorption and desorption presents an enormous challenge to develop high-efficiency adsorbents. Restricted by their fixed structures and surface properties, conventional adsorbents are unable to meet the demands of adsorption and desorption processes simultaneously.To confront the obstacles, the development of advanced adsorbents to meet the demand of adsorptive separation are urgent. A key strategy to address such issues lies in dynamically adjusting the pore structures or the surface properties of adsorbents with controllability according to the demands of adsorption/desorption. For instance, pursuant to the requirements of varying pore structures during adsorption/desorption, the pore openings of adsorbents can be customized through dynamic structural change of the decorated stimuli-sensitive motifs by suitable external intervention. In addition, the active sites within the adsorbents can be exposed to enhance the adsorption selectivity or sheltered to accelerate the desorption through stimuli-triggered adsorbent-adsorbate interactions. Hence, we proposed a concept of process-oriented smart adsorbents (POSAs) on the basis of the requirements of the adsorption/desorption processes. The design and development of such POSAs are based on three aspects, namely, pore openings, pore spaces, and adsorption sites of adsorbents.In this Account, we present the progress in the development of POSAs according to the demands of adsorption/desorption processes. A series of POSAs with incorporated stimuli-sensitive motifs were successfully achieved. The versatility of incorporated motifs allows them to tune the pore structures and surface properties of adsorbents dynamically and further to enhance the adsorption and desorption efficiency simultaneously. Based on the concept of POSAs, we hope that this Account could contribute to the development of high-efficiency adsorbents and ultimately promote their applications in practical industrial separation. Moreover, we present an outlook on future trends and challenges on the road toward the development and applications of POSAs.
Collapse
Affiliation(s)
- Yao Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Peng Tan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiao-Qin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Lin-Bing Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
5
|
Nazarzadeh Zare E, Mudhoo A, Ali Khan M, Otero M, Bundhoo ZMA, Patel M, Srivastava A, Navarathna C, Mlsna T, Mohan D, Pittman CU, Makvandi P, Sillanpää M. Smart Adsorbents for Aquatic Environmental Remediation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007840. [PMID: 33899324 DOI: 10.1002/smll.202007840] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/19/2021] [Indexed: 05/25/2023]
Abstract
A noticeable interest and steady rise in research studies reporting the design and assessment of smart adsorbents for sequestering aqueous metal ions and xenobiotics has occurred in the last decade. This motivates compiling and reviewing the characteristics, potentials, and performances of this new adsorbent generation's metal ion and xenobiotics sequestration. Herein, stimuli-responsive adsorbents that respond to its media (as internal triggers; e.g., pH and temperature) or external triggers (e.g., magnetic field and light) are highlighted. Readers are then introduced to selective adsorbents that selectively capture materials of interest. This is followed by a discussion of self-healing and self-cleaning adsorbents. Finally, the review ends with research gaps in material designs.
Collapse
Affiliation(s)
| | - Ackmez Mudhoo
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit, Moka, 80837, Mauritius
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Marta Otero
- CESAM-Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, Campus de Santiago, Aveiro, 3810-193, Portugal
| | | | - Manvendra Patel
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Anju Srivastava
- Chemistry Department, Hindu College, University of Delhi, Delhi, 110007, India
| | - Chanaka Navarathna
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Todd Mlsna
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Dinesh Mohan
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Charles U Pittman
- Department of Chemistry, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interface, Viale Rinaldo Piaggio 34, Pontedera, Pisa, 56025, Italy
| | - Mika Sillanpää
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa
- School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Johannesburg, 2050, South Africa
- School of Resources and Environment, University of Electronic Science and Technology of China (UESTC), NO. 2006, Xiyuan Ave., West High-Tech Zone, Chengdu, Sichuan, 611731, P.R. China
- Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, Bangi, Selangor, 43600, Malaysia
| |
Collapse
|
6
|
Li S, Xu J, Yao G, Liu H. Self-Adhesive, Self-Healable, and Triple-Responsive Hydrogel Doped with Polydopamine as an Adsorbent toward Methylene Blue. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03359] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Sisi Li
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P.R. China
| | - Jun Xu
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P.R. China
| | - Guohong Yao
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P.R. China
| | - Hui Liu
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, P.R. China
| |
Collapse
|
7
|
Tan P, Jiang Y, Liu X, Sun L. Magnetically responsive porous materials for efficient adsorption and desorption processes. Chin J Chem Eng 2019. [DOI: 10.1016/j.cjche.2018.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Integrated adsorption and catalytic degradation of safranine T by a porous covalent triazine-based framework. J Colloid Interface Sci 2018; 532:1-11. [DOI: 10.1016/j.jcis.2018.07.113] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/25/2018] [Accepted: 07/25/2018] [Indexed: 11/19/2022]
|
9
|
Guo Z, Chen Q, Gu H, He Z, Xu W, Zhang J, Liu Y, Xiong L, Zheng L, Feng Y. Giant Microgels with CO 2-Induced On-Off, Selective, and Recyclable Adsorption for Anionic Dyes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:38073-38083. [PMID: 30360074 DOI: 10.1021/acsami.8b13448] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Adsorbents that are capable of controllable pollutants adsorption and release without secondary pollution are attractive in water treatment. Here, we propose eco-friendly CO2 as a trigger to switch the charge states and collapse-expansion transition of giant microgels consisting of hydrophilic acrylamide and hydrophobic 2-(diethylamino)ethyl methacrylate and demonstrated the on-off, selective, and recyclable adsorption of anionic dyes on microgels under CO2 stimulation. Apart from easy-handling separation from the water by a simple filtration process, the maximum adsorption capacity is as high as 821 mg g-1, and the adsorption isotherms and kinetics obeyed Langmuir isotherm and the pseudo-second-order kinetics models, respectively. The anionic dye can also be separated from the mixture solution using CO2-treated microgels. Moreover, a wastewater treatment prototype with microgel-packed column was fabricated. Under continuous flow condition, the dye was removed and recovered by alternative bubbling CO2 and flushing with aqueous alkali (pH 12). Thus, this type of microgels with CO2-induced protonation-deprotonation transition can serve as a cost-effective, environmentally friendly, and efficient adsorbent for water purification applications.
Collapse
Affiliation(s)
- Zanru Guo
- Department of Polymer Materials and Chemical Engineering, School of Materials Science and Engineering , East China Jiaotong University , Nanchang , Jiangxi 330013 , P. R. China
| | - Qiang Chen
- Department of Polymer Materials and Chemical Engineering, School of Materials Science and Engineering , East China Jiaotong University , Nanchang , Jiangxi 330013 , P. R. China
| | - Hongjian Gu
- Department of Polymer Materials and Chemical Engineering, School of Materials Science and Engineering , East China Jiaotong University , Nanchang , Jiangxi 330013 , P. R. China
| | - Zhanfeng He
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation , Southwest Petroleum University , Chengdu 610500 , P. R. China
| | - Wenyuan Xu
- Department of Polymer Materials and Chemical Engineering, School of Materials Science and Engineering , East China Jiaotong University , Nanchang , Jiangxi 330013 , P. R. China
| | - Jiali Zhang
- Department of Polymer Materials and Chemical Engineering, School of Materials Science and Engineering , East China Jiaotong University , Nanchang , Jiangxi 330013 , P. R. China
| | - Yongxin Liu
- Department of Polymer Materials and Chemical Engineering, School of Materials Science and Engineering , East China Jiaotong University , Nanchang , Jiangxi 330013 , P. R. China
| | - Leyan Xiong
- Department of Polymer Materials and Chemical Engineering, School of Materials Science and Engineering , East China Jiaotong University , Nanchang , Jiangxi 330013 , P. R. China
| | - Longzhen Zheng
- Department of Polymer Materials and Chemical Engineering, School of Materials Science and Engineering , East China Jiaotong University , Nanchang , Jiangxi 330013 , P. R. China
| | - Yujun Feng
- Polymer Research Institute, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , P. R. China
| |
Collapse
|
10
|
Multifunctional guest–host particles engineered by reversal nanoimprint lithography. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0719-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|