1
|
Wen S, Wang H, Xin Q, Hu E, Lei Z, Hu F, Wang Q. Selective adsorption of uranium (VI) from wastewater using a UiO-66/calcium alginate/hydrothermal carbon composite material. Carbohydr Polym 2023; 315:120970. [PMID: 37230612 DOI: 10.1016/j.carbpol.2023.120970] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/27/2023]
Abstract
Uranium mining, smelting, and nuclear industries generate a considerable amount of wastewater containing uranium. To treat this wastewater effectively and inexpensively, a novel hydrogel material (cUiO-66/CA) was developed by co-immobilizing UiO-66 with calcium alginate and hydrothermal carbon. Batch tests were conducted to determine the optimal adsorption conditions for uranium using cUiO-66/CA, and the adsorption behavior was spontaneous and endothermic, confirming the quasi-second-order dynamics model and the Langmuir model. At a temperature of 308.15 K and pH = 4, the maximum adsorption capacity of uranium was 337.77 mg g-1. The surface appearance and interior structure of the material were analyzed using SEM, FTIR, XPS, BET, and XRD techniques. The results indicated two possible uranium adsorption processes of cUiO-66/CA: (1) Ca2+ and UO22+ ion exchange process and (2) coordination of uranyl ions with hydroxyl and carboxyl ions to form complexes. cUiO-66/CA exhibited strong selectivity for U (VI) in a multicomponent mixed solution and uranium-containing wastewater, with uranium removal rates of 99.03 % and 81.45 %, respectively. The hydrogel material demonstrated excellent acid resistance, and the uranium adsorption rate exceeded 98 % in the pH range of 3-8. Therefore, this study suggests that cUiO-66/CA has the potential to treat uranium-containing wastewater in a broad pH range.
Collapse
Affiliation(s)
- Siqian Wen
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Hongqiang Wang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Qi Xin
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Eming Hu
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Zhiwu Lei
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Fang Hu
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Qingliang Wang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China; Cooperative Innovation Center for Nuclear Fuel Cycle Technology and Equipment, University of South China, Hengyang 421001, China.
| |
Collapse
|
2
|
Su Y, Wenzel M, Paasch S, Seifert M, Böhm W, Doert T, Weigand JJ. Recycling of Brewer's Spent Grain as a Biosorbent by Nitro-Oxidation for Uranyl Ion Removal from Wastewater. ACS OMEGA 2021; 6:19364-19377. [PMID: 34368523 PMCID: PMC8340112 DOI: 10.1021/acsomega.1c00589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Developing biosorbents derived from agro-industrial biomass is considered as an economic and sustainable method for dealing with uranium-contaminated wastewater. The present study explores the feasibility of oxidizing a representative protein-rich biomass, brewer's spent grain (BSG), to an effective and reusable uranyl ion adsorbent to reduce the cost and waste generation during water treatment. The unique composition of BSG favors the oxidation process and yields in a high carboxyl group content (1.3 mmol/g) of the biosorbent. This makes BSG a cheap, sustainable, and suitable raw material independent from pre-treatment. The oxidized brewer's spent grain (OBSG) presents a high adsorption capacity of U(VI) of 297.3 mg/g (c 0(U) = 900 mg/L, pH = 4.7) and fast adsorption kinetics (1 h) compared with other biosorbents reported in the literature. Infrared spectra (Fourier transform infrared), 13C solid-state nuclear magnetic resonance spectra, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and thermogravimetric analysis were employed to characterize the biosorbents and reveal the adsorption mechanisms. The desorption and reusability of OBSG were tested for five cycles, resulting in a remaining adsorption of U(VI) of 100.3 mg/g and a desorption ratio of 89%. This study offers a viable and sustainable approach to convert agro-industrial waste into effective and reusable biosorbents for uranium removal from wastewater.
Collapse
Affiliation(s)
- Yi Su
- Chair
of Inorganic Molecular Chemistry, TU Dresden, 01062 Dresden, Germany
| | - Marco Wenzel
- Chair
of Inorganic Molecular Chemistry, TU Dresden, 01062 Dresden, Germany
| | - Silvia Paasch
- Chair
of Bioanalytical Chemistry, TU Dresden, 01062 Dresden, Germany
| | - Markus Seifert
- Chair
of Inorganic Molecular Chemistry, TU Dresden, 01062 Dresden, Germany
| | - Wendelin Böhm
- Chair
of Food Chemistry, TU Dresden, 01062 Dresden, Germany
| | - Thomas Doert
- Chair
of Inorganic Chemistry II, TU Dresden, 01062 Dresden, Germany
| | - Jan J. Weigand
- Chair
of Inorganic Molecular Chemistry, TU Dresden, 01062 Dresden, Germany
| |
Collapse
|
3
|
Sun Y, Zhang H, Yuan N, Ge Y, Dai Y, Yang Z, Lu L. Phosphorylated biomass-derived porous carbon material for efficient removal of U(VI) in wastewater. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125282. [PMID: 33582468 DOI: 10.1016/j.jhazmat.2021.125282] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
A simple strategy to prepare cost-effective adsorbent materials for the removal of U(VI) in radioactive wastewater is of great significance to environmental protection. Here, activated orange peel was used as a precursor for the synthesis of biomass charcoal, and then a phosphorylated honeycomb-like porous carbon (HLPC-PO4) material was prepared through simple phosphorylation modification. FT-IR and XPS showed that P-O-C, P-C, and P˭O bonds appeared in HLPC-PO4, indicating that the phosphorylation process is mainly the reaction of C-O bonds on the surface of the material with -PO4. The results of the batch experiments showed that the uptake equilibrium of HLPC-PO4 to U(VI) occurred within 20 min, and the kinetic simulation showed that the process was monolayer chemical adsorption. Interestingly, the maximum U(VI) uptake capacity of HLPC-PO4 at T = 298.15 K and pH = 6.0 was 552.6 mg/g, which was more than 3 times that of HLPC. In addition, HLPC-PO4 showed an adsorption selectivity of 70.1% for U(VI). After 5 cycles, HLPC-PO4 maintained its original adsorption capacity of 90.5%. The adsorption mechanism can be explained as the complexation of U(VI) with P-O and P˭O on the surface of the adsorbent, confirming the strong bonding ability of -PO4 to U(VI).
Collapse
Affiliation(s)
- Yanbing Sun
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai, Guangdong 519082, PR China
| | - Haoyan Zhang
- The Fourth Research and Design Engineering Institute of China National Nuclear Corporation, Shijiazhuang, Hebei 050022, PR China; State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China
| | - Nan Yuan
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai, Guangdong 519082, PR China
| | - Yulin Ge
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai, Guangdong 519082, PR China
| | - Ying Dai
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang, Jiangxi 330013, PR China
| | - Zhen Yang
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai, Guangdong 519082, PR China.
| | - Liang Lu
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai, Guangdong 519082, PR China.
| |
Collapse
|
4
|
Zhang Q, Zhang S, Zhao J, Wei P, Wang C, Liu P, Zhao X, Zeng K, Wu F, Liu Z. Unexpected ultrafast and highly efficient removal of uranium from aqueous solutions by a phosphonic acid and amine functionalized polymer adsorbent. NEW J CHEM 2021. [DOI: 10.1039/d1nj00218j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
P(DMAA–B2MP) was prepared by solvothermal polymerization and exhibits fast and efficient sorption of uranium(vi) from aqueous solutions.
Collapse
Affiliation(s)
- Qinghua Zhang
- State Key Laboratory of Nuclear Resources and Environment
- East China University of Technology
- Nanchang 330013
- China
| | - Shiao Zhang
- State Key Laboratory of Nuclear Resources and Environment
- East China University of Technology
- Nanchang 330013
- China
| | - Jizhou Zhao
- State Key Laboratory of Nuclear Resources and Environment
- East China University of Technology
- Nanchang 330013
- China
| | - Peng Wei
- State Key Laboratory of Nuclear Resources and Environment
- East China University of Technology
- Nanchang 330013
- China
| | - Changfu Wang
- State Key Laboratory of Nuclear Resources and Environment
- East China University of Technology
- Nanchang 330013
- China
| | - Pan Liu
- State Key Laboratory of Nuclear Resources and Environment
- East China University of Technology
- Nanchang 330013
- China
| | - Xiaohong Zhao
- College of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Kai Zeng
- State Key Laboratory of Nuclear Resources and Environment
- East China University of Technology
- Nanchang 330013
- China
| | - Faming Wu
- State Key Laboratory of Nuclear Resources and Environment
- East China University of Technology
- Nanchang 330013
- China
| | - Zhirong Liu
- State Key Laboratory of Nuclear Resources and Environment
- East China University of Technology
- Nanchang 330013
- China
| |
Collapse
|
5
|
Liu L, Lin X, Li M, Chu H, Wang H, Xie Y, Du Z, Liu M, Liang L, Gong H, Zhou J, Li Z, Luo X. Microwave-assisted hydrothermal synthesis of carbon doped with phosphorus for uranium(VI) adsorption. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07453-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Liu H, An QD, Kim J, Guo L, Zhao YM, Xiao ZY, Zhai SR. Facile fabrication of Cu xS y/Carbon composites using lignosulfonate for efficient palladium recovery under strong acidic conditions. JOURNAL OF HAZARDOUS MATERIALS 2020; 391:122253. [PMID: 32062350 DOI: 10.1016/j.jhazmat.2020.122253] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
The recovery of noble metals from aqueous systems is of great significance for constructing sustainable framework of modern industry yet remains challenging. Herein, CuxSy/Carbon composites with superior thermal stability and adsorption capacity were successfully synthesized via one-pot hydrothermal method using lignosulfonate as dual role of raw materials. The optimal synthesis conditions were investigated via tailoring the temperature and the mass ratio of reagents. The morphologies and physical properties of the composites were characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The surface chemistry was analyzed by Zeta potential analysis, Brunauer-Emmet-Teller (BET), and X-ray photoelectron spectroscopy (XPS). The Langmuir model and the pseudo-second-order model well described the adsorption of Pd(II) and Pd(IV) delivered by fabricated composites. The adsorption capacity obtained from Langmuir isotherm model towards Pd(IV) was 114 mg/g and Pd(II) was 101 mg/g, respectively. More importantly, the adsorbed palladium species could be desorbed with hydrochloric acid and thiourea, which suggested good durability and recycling performance of the typical composite. This work might provide a new guidance for the utilization of lignin or its derivatives and enriched the research in the field of noble metal recovery.
Collapse
Affiliation(s)
- Hao Liu
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Qing-da An
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Jeonghun Kim
- Department of Chemistry, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul, 02707 Republic of Korea
| | - Lin Guo
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Yu-Meng Zhao
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Zuo-Yi Xiao
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Shang-Ru Zhai
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
7
|
Zhao J, Shao Q, Ge S, Zhang J, Lin J, Cao D, Wu S, Dong M, Guo Z. Advances in Template Prepared Nano-Oxides and their Applications: Polluted Water Treatment, Energy, Sensing and Biomedical Drug Delivery. CHEM REC 2020; 20:710-729. [PMID: 31944590 DOI: 10.1002/tcr.201900093] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022]
Abstract
The nano-oxide materials with special structures prepared by template methods have a good dispersion, regular structures and high specific surface areas. Therefore, in some areas, improved properties are observed than conventional bulk oxide materials. For example, in the treatment of dye wastewater, the treatment efficiency of adsorbents and catalytic materials prepared by template method was about 30 % or even higher than that of conventional samples. This review mainly focuses on the progress of inorganic, organic and biological templates in the preparation of micro- and nano- oxide materials with special morphologies, and the roles of the prepared materials as adsorbents and photocatalysts in dye wastewater treatment. The characteristics and advantages of inorganic, organic and biological template are also summarized. In addition, the applications of template method prepared oxides in the field of sensors, drug carrier, energy materials and other fields are briefly discussed with detailed examples.
Collapse
Affiliation(s)
- Junkai Zhao
- College of Chemical and Environmental Engineering, Shandong, University of Science and Technology, Qingdao, 266590, China
| | - Qian Shao
- College of Chemical and Environmental Engineering, Shandong, University of Science and Technology, Qingdao, 266590, China
| | - Shengsong Ge
- College of Chemical and Environmental Engineering, Shandong, University of Science and Technology, Qingdao, 266590, China
| | - Jiaoxia Zhang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Jing Lin
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Dapeng Cao
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shide Wu
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| | - Mengyao Dong
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450002, China.,Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
8
|
Su Y, Böhm W, Wenzel M, Paasch S, Acker M, Doert T, Brunner E, Henle T, Weigand JJ. Mild hydrothermally treated brewer's spent grain for efficient removal of uranyl and rare earth metal ions. RSC Adv 2020; 10:45116-45129. [PMID: 35516275 PMCID: PMC9058606 DOI: 10.1039/d0ra08164g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/26/2020] [Indexed: 12/15/2022] Open
Abstract
The increasing concerns on uranium and rare earth metal ion pollution in the environment require sustainable strategies to remove them from wastewater. The present study reports an eco-friendly approach to convert a kind of protein-rich biomass, brewer's spent grain (BSG), into effective biosorbents for uranyl and rare earth metal ions. The employed method reduces the energy consumption by performing the hydrothermal treatment at a significantly lower temperature (150 °C) than conventional hydrothermal carbonization. In addition, with the aid of the Maillard reaction between carbohydrates and proteins forming melanoidins, further activation processes are not required. Treatment at 150 °C for 16 h results in an altered biosorbent (ABSG) with increased content of carboxyl groups (1.46 mmol g−1) and a maximum adsorption capacity for La3+, Eu3+, Yb3+ (pH = 5.7) and UO22+ (pH = 4.7) of 38, 68, 46 and 221 mg g−1, respectively. Various characterization methods such as FT-IR, 13C CP/MAS NMR, SEM-EDX and STA-GC-MS analysis were performed to characterize the obtained material and to disclose the adsorption mechanisms. Aside from oxygen-containing functional groups, nitrogen-containing functional groups also contribute to the adsorption. These results strongly indicate that mild hydrothermal treatment of BSG could be applied as a greener, low-cost method to produce effective adsorbents for uranyl and rare earth metal ion removal. Effective biosorbent ABSG is obtained via hydrothermal treatment of BSG at low temperature without activation, minimizing energy consumption and environmental impact.![]()
Collapse
Affiliation(s)
- Yi Su
- Chair of Inorganic Molecular Chemistry
- TU Dresden
- 01062 Dresden
- Germany
| | - Wendelin Böhm
- Chair of Food Chemistry
- TU Dresden
- 01062 Dresden
- Germany
| | - Marco Wenzel
- Chair of Inorganic Molecular Chemistry
- TU Dresden
- 01062 Dresden
- Germany
| | - Silvia Paasch
- Chair of Bioanalytical Chemistry
- TU Dresden
- 01062 Dresden
- Germany
| | - Margret Acker
- Central Radionuclide Laboratory
- TU Dresden
- 01062 Dresden
- Germany
| | - Thomas Doert
- Chair of Inorganic Chemistry II
- TU Dresden
- 01062 Dresden
- Germany
| | - Eike Brunner
- Chair of Bioanalytical Chemistry
- TU Dresden
- 01062 Dresden
- Germany
| | - Thomas Henle
- Chair of Food Chemistry
- TU Dresden
- 01062 Dresden
- Germany
| | - Jan J. Weigand
- Chair of Inorganic Molecular Chemistry
- TU Dresden
- 01062 Dresden
- Germany
| |
Collapse
|
9
|
Duan C, Li J, Yang P, Ke G, Zhu C, Zhang S. A facile synthesis of hierarchically porous Cu-BTC for efficient removal of uranium(VI). J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06888-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Chu H, Lin X, Li M, Liang L, Zhou J, Shang R, Luo X. Rapid synthesis of carbon materials by microwave-assisted hydrothermal method at low temperature and its adsorption properties for uranium (VI). J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06613-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Xie Y, Chen C, Ren X, Wang X, Wang H, Wang X. Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation. PROGRESS IN MATERIALS SCIENCE 2019; 103:180-234. [DOI: https:/doi.org/10.1016/j.pmatsci.2019.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|
12
|
Dutta DP, Nath S. Low cost synthesis of SiO2/C nanocomposite from corn cobs and its adsorption of uranium (VI), chromium (VI) and cationic dyes from wastewater. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.08.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
Zhang M, Li Y, Bai C, Guo X, Han J, Hu S, Jiang H, Tan W, Li S, Ma L. Synthesis of Microporous Covalent Phosphazene-Based Frameworks for Selective Separation of Uranium in Highly Acidic Media Based on Size-Matching Effect. ACS APPLIED MATERIALS & INTERFACES 2018; 10:28936-28947. [PMID: 30068077 DOI: 10.1021/acsami.8b06842] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
On the basis of high stability of phosphorus-oxygen linkage, we constructed two microporous covalent phosphazene-based frameworks (CPFs), for the first time, by choosing hexachlorocyclotriphosphazene as a core unit and polyhydroxy aromatic compounds (hydroquinone or phloroglucinol) as monomers, named CPF-D and CPF-T, respectively. Characterization studies by using Fourier transform infrared, nuclear magnetic resonance, thermal gravimetric analysis, 60Co γ-ray irradiation, and so forth, demonstrated that both of the CPF materials have excellent acid and radiation stability and relatively higher thermal stability. The results of batch adsorption experiments show that CPF-T is significantly more capable of sorbing uranium than CPF-D. In a pure uranium system with higher acidity (pH 1), the uranium sorption amount of CPF-T can reach up to 140 mg g-1. Distinctively, in mixed-metal solution with 12 coexisting cations, CPF-T shows relatively stable and excellent uranium adsorption capability over a wide range of acidity (pH 4 to 3 M HNO3), and the difference in uranium sorption amounts is less than 30% with the maximum of 0.26 mmol g-1 at pH 4 and the minimum of 0.20 mmol g-1 at 3 M HNO3, which is far superior to that of the conventional solid-phase extractant (SPE) materials previously reported. The research results suggested that the sorption model based on the speculated mechanism of size-matching plus hydrogen bond network has played a dominant role in the process of uranium adsorption. The proposed strategy for the one-pot fabrication of an acid-resistant microporous framework materials by bridging the aromatic monomers via P-O bonds provides an alternative approach for the design and synthesis of new SPE materials with size-matching function desired for effective separation of uranium or other valuable metals from highly acidic environments.
Collapse
Affiliation(s)
- Meicheng Zhang
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education , Sichuan University , Chengdu 610064 , P. R. China
| | - Yang Li
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education , Sichuan University , Chengdu 610064 , P. R. China
| | - Chiyao Bai
- Chengdu New Radiomedicine Technology CO. LTD. , Chengdu 610207 , P. R. China
| | - Xinghua Guo
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education , Sichuan University , Chengdu 610064 , P. R. China
| | - Jun Han
- Institute of Nuclear Physics and Chemistry , China Academy of Engineering Physics , Mianyang 621900 , P. R. China
| | - Sheng Hu
- Institute of Nuclear Physics and Chemistry , China Academy of Engineering Physics , Mianyang 621900 , P. R. China
| | - Hongquan Jiang
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education , Sichuan University , Chengdu 610064 , P. R. China
| | - Wang Tan
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education , Sichuan University , Chengdu 610064 , P. R. China
| | - Shoujian Li
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education , Sichuan University , Chengdu 610064 , P. R. China
| | - Lijian Ma
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education , Sichuan University , Chengdu 610064 , P. R. China
| |
Collapse
|
14
|
Carbon Materials from Technical Lignins: Recent Advances. Top Curr Chem (Cham) 2018; 376:33. [DOI: 10.1007/s41061-018-0210-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/02/2018] [Indexed: 10/28/2022]
|
15
|
Jin C, Zhang X, Xin J, Liu G, Chen J, Wu G, Liu T, Zhang J, Kong Z. Thiol–Ene Synthesis of Cysteine-Functionalized Lignin for the Enhanced Adsorption of Cu(II) and Pb(II). Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b00823] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Can Jin
- Key Laboratory of Biomass Energy and Material of Jiangsu Province, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
- School of Mechanical and Materials Engineering, Composite Materials and Engineering Center, Washington State University, Pullman, Washington 99164, United States
| | - Xueyan Zhang
- Key Laboratory of Biomass Energy and Material of Jiangsu Province, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Junna Xin
- School of Mechanical and Materials Engineering, Composite Materials and Engineering Center, Washington State University, Pullman, Washington 99164, United States
| | - Guifeng Liu
- Key Laboratory of Biomass Energy and Material of Jiangsu Province, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Jian Chen
- Key Laboratory of Biomass Energy and Material of Jiangsu Province, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Guomin Wu
- Key Laboratory of Biomass Energy and Material of Jiangsu Province, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Tuan Liu
- School of Mechanical and Materials Engineering, Composite Materials and Engineering Center, Washington State University, Pullman, Washington 99164, United States
| | - Jinwen Zhang
- School of Mechanical and Materials Engineering, Composite Materials and Engineering Center, Washington State University, Pullman, Washington 99164, United States
| | - Zhenwu Kong
- Key Laboratory of Biomass Energy and Material of Jiangsu Province, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| |
Collapse
|