1
|
Najjoum N, Grimi N, Benali M, Chadni M, Castignolles P. Extraction and chemical features of wood hemicelluloses: A review. Int J Biol Macromol 2025; 311:143681. [PMID: 40316123 DOI: 10.1016/j.ijbiomac.2025.143681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/20/2025] [Accepted: 04/28/2025] [Indexed: 05/04/2025]
Abstract
Hemicelluloses have immense potential for applications in diverse fields, especially in polymeric materials. This review critically examines biomass treatment technologies, encompassing chemical, mechanical, and combined approaches to disrupt plant cell walls and enhance hemicellulose accessibility and solubility. The choice of a treatment method depends on factors like purpose, biomass composition, and economic and environmental considerations. Hemicelluloses extracted from wood are composed from up to 11 monomer units, most of them "neutral" monosaccharides (glucose, mannose etc.) but a couple "charged" (uronic acids). The average compositions of wood hemicelluloses change with the type of wood; the accuracy is not known. The content of "charged" monosaccharides may particularly suffer from underestimation due to strong hydrolysis. The chemical composition of intact wood hemicelluloses has never been determined: it is thus not known if hemicelluloses in wood are a mixture of several "simple" polysaccharides (such as glucomannans) or complex polysaccharides with up to 11 monomer units in the same macromolecule. Currently determined molecular weights (MW) of hemicelluloses range from 500 to 1,000,000 Da. The precision and accuracy of MWs are not known, primarily due to column inconsistency in analyzing anionic and neutral polymers. A combination of chromatography SEC methods and detectors is required for standardization.
Collapse
Affiliation(s)
- Nicole Najjoum
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherches de Royallieu-CS, 60 319-60 203 Compiègne Cedex, France; Sorbonne Université, Institut Parisien de Chimie Moléculaire, UMR 8232, Equipe Chimie des polymères, Campus Pierre et Marie Curie, 75005 Paris, France.
| | - Nabil Grimi
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherches de Royallieu-CS, 60 319-60 203 Compiègne Cedex, France.
| | - Mohammed Benali
- Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherches de Royallieu-CS, 60 319-60 203 Compiègne Cedex, France
| | - Morad Chadni
- URD Agro-Biotechnologies Industrielles (ABI), AgroParisTech, CEBB, 51110 Pomacle, France
| | - Patrice Castignolles
- Sorbonne Université, Institut Parisien de Chimie Moléculaire, UMR 8232, Equipe Chimie des polymères, Campus Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
2
|
Kumar V, Verma P. Microbial valorization of kraft black liquor for production of platform chemicals, biofuels, and value-added products: A critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121631. [PMID: 38986370 DOI: 10.1016/j.jenvman.2024.121631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
The proper treatment and utilization of kraft black liquor, generated from the pulp and paper industry through the kraft pulping method, is required to reduce environmental impacts prior to the final disposal. It also improves the economic performance through the utilization of waste. Microbial valorization appears to demonstrates the dual benefits of waste management and resource recovery by providing an innovative solution to convert kraft black liquor into resource for reuse. A comprehensive review on the microbial valorization of kraft black liquor, describing the role in valorization and management, is still lacking in the literature, forming the rationale of this article. Thus, the present study reviews and systematically discusses the potential of utilizing microorganisms to valorize kraft black liquor as a sustainable feedstock to develop a numerous portfolio of platform chemicals, bioenergy, and other value-added products. This work contributes to sustainability and resource efficiency within the pulp and paper industry. The recent developments in utilization of synthetic biology tools and molecular techniques, including omics approaches for engineering novel microbial strains, for enhancing kraft black liquor valorization has been presented. This review explores how the better utilization of kraft black liquor in the pulp and paper industry contributes to achieving UN Sustainable Development Goals (SDGs), particularly clean water and sanitation (SDG 6) as well as the affordable and clean energy goal (SDG 7). The current review also addresses challenges related to toxicity, impurities, low productivity, and downstream processing that serve as obstacles to the progress of developing highly efficient bioproducts. The new directions for future research efforts to fill the critical knowledge gaps are proposed. This study concludes that by implementing microbial valorization techniques, the pulp and paper industry can transition from a linear to a circular bioeconomy and eco-friendly manage the kraft black liuor. This approach showed to be effective towards resource recovery, while simultaneously minimizing the environmental burden.
Collapse
Affiliation(s)
- Vineet Kumar
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817, Rajasthan, India
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, 305817, Rajasthan, India.
| |
Collapse
|
3
|
Li S, Wang H, Jiang W, Zhou J, Liu Y. Integrated Preparation of Hollow Lignin Nanoparticles as a Drug Carrier and Levulinic Acid from the Poplar Wood Prehydrolysis Liquor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9676-9687. [PMID: 38663019 DOI: 10.1021/acs.langmuir.4c00634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Prehydrolysis liquid (PHL) from dissolving pulp and biorefinery industries is rich in saccharides and lignin, being considered as a potential source of value-added materials and platform molecules. This study proposed an environmentally friendly and simple method to prepare morphologically controllable hollow lignin nanoparticles (LNPs) and levulinic acid (LA) from PHL. In the first step, after hydrothermal treatment of PHL with p-toluenesulfonic acid (p-TsOH), lignin with a uniform molecular weight was obtained to prepare LNPs. The prepared LNPs have an obvious hollow structure, with an average size of 490-660 nm, and exhibit good stability during 30 days of storage. When the as-obtained LNPs were used as a sustained-release agent for amikacin sulfate, the encapsulation efficiency reached over 70% and the release efficiency within 40 h reached 69.2% in a pH 5.5 buffer. Subsequently, the remaining PHL that contains saccharides was directly used for LA production under the catalysis of p-TsOH. At 150 °C for 1.5 h, the LA yield reached 58.4% and remained at 56% after 5 cycles of p-TsOH. It is worth noting that only p-TsOH was used as a reactive reagent throughout the entire preparation process. Overall, this study provided a novel pathway for the integrated utilization of PHL and showed the immense potential of the preparation and application of LNPs.
Collapse
Affiliation(s)
- Shunli Li
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, P.R. China
- State Key Laboratory of Bio-based Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, P.R. China
| | - Huimei Wang
- State Key Laboratory of Bio-based Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, P.R. China
| | - Weikun Jiang
- State Key Laboratory of Bio-based Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, P.R. China
| | - Jinghui Zhou
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, P.R. China
| | - Yu Liu
- Liaoning Key Laboratory of Lignocellulose Chemistry and Biomaterials, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, P.R. China
- State Key Laboratory of Bio-based Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan, Shandong 250353, P.R. China
| |
Collapse
|
4
|
Kumar V, Verma P. Pulp-paper industry sludge waste biorefinery for sustainable energy and value-added products development: A systematic valorization towards waste management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120052. [PMID: 38244409 DOI: 10.1016/j.jenvman.2024.120052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024]
Abstract
The pulp-paper industry is one of the main industrial sectors that produce massive amounts of residual sludge, constituting an enormous environmental burden for the industries. Traditional sludge management practices, such as landfilling and incineration, are restricted due to mounting environmental pressures, complex regulatory frameworks, land availability, high costs, and public opinion. Valorization of pulp-paper industry sludge (PPS) to produce high-value products is a promising substitute for traditional sludge management practices, promoting their reuse and recycling. Valorization of PPIS for biorefinery beneficiation includes biomethane, biohydrogen, bioethanol, biobutanol, and biodiesel production for renewable energy generation. Additionally, the various thermo-chemical technologies can be utilized to synthesize bio-oil, hydrochar, biochar, adsorbent, and activated carbon, signifying potential for value-added generation. Moreover, PPIS can be recycled as a byproduct by incorporating it into nanocomposites, cardboard, and construction materials development. This paper aims to deliver a comprehensive overview of PPIS management approaches and thermo-chemical technologies utilized for the development of platform chemicals in industry. Substitute uses of PPIS, such as making building materials, developing supercapacitors, and making cardboard, are also discussed. In addition, this article deeply discusses recent developments in biotechnologies for valorizing PPIS to yield an array of valuable products, such as biofuels, lactic acids, cellulose, nanocellulose, and so on. This review serves as a roadmap for future research endeavors in the effective handling of PPIS.
Collapse
Affiliation(s)
- Vineet Kumar
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer-305817, Rajasthan, India.
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer-305817, Rajasthan, India.
| |
Collapse
|
5
|
He M, Sun Y, Han B. Green Carbon Science: Efficient Carbon Resource Processing, Utilization, and Recycling towards Carbon Neutrality. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mingyuan He
- Shanghai Key Laboratory of Green Chemistry & Chemical Processes Department of Chemistry East China Normal University Shanghai 200062 China
- Research Institute of Petrochem Processing, SINOPEC Beijing 100083 China
| | - Yuhan Sun
- Low Carbon Energy Conversion Center Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201203 China
- Shanghai Low Carbon Technology Innovation Platform Shanghai 210620 China
| | - Buxing Han
- Shanghai Key Laboratory of Green Chemistry & Chemical Processes Department of Chemistry East China Normal University Shanghai 200062 China
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
6
|
Narisetty V, Cox R, Bommareddy R, Agrawal D, Ahmad E, Pant KK, Chandel AK, Bhatia SK, Kumar D, Binod P, Gupta VK, Kumar V. Valorisation of xylose to renewable fuels and chemicals, an essential step in augmenting the commercial viability of lignocellulosic biorefineries. SUSTAINABLE ENERGY & FUELS 2021; 6:29-65. [PMID: 35028420 PMCID: PMC8691124 DOI: 10.1039/d1se00927c] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/25/2021] [Indexed: 05/30/2023]
Abstract
Biologists and engineers are making tremendous efforts in contributing to a sustainable and green society. To that end, there is growing interest in waste management and valorisation. Lignocellulosic biomass (LCB) is the most abundant material on the earth and an inevitable waste predominantly originating from agricultural residues, forest biomass and municipal solid waste streams. LCB serves as the renewable feedstock for clean and sustainable processes and products with low carbon emission. Cellulose and hemicellulose constitute the polymeric structure of LCB, which on depolymerisation liberates oligomeric or monomeric glucose and xylose, respectively. The preferential utilization of glucose and/or absence of the xylose metabolic pathway in microbial systems cause xylose valorization to be alienated and abandoned, a major bottleneck in the commercial viability of LCB-based biorefineries. Xylose is the second most abundant sugar in LCB, but a non-conventional industrial substrate unlike glucose. The current review seeks to summarize the recent developments in the biological conversion of xylose into a myriad of sustainable products and associated challenges. The review discusses the microbiology, genetics, and biochemistry of xylose metabolism with hurdles requiring debottlenecking for efficient xylose assimilation. It further describes the product formation by microbial cell factories which can assimilate xylose naturally and rewiring of metabolic networks to ameliorate xylose-based bioproduction in native as well as non-native strains. The review also includes a case study that provides an argument on a suitable pathway for optimal cell growth and succinic acid (SA) production from xylose through elementary flux mode analysis. Finally, a product portfolio from xylose bioconversion has been evaluated along with significant developments made through enzyme, metabolic and process engineering approaches, to maximize the product titers and yield, eventually empowering LCB-based biorefineries. Towards the end, the review is wrapped up with current challenges, concluding remarks, and prospects with an argument for intense future research into xylose-based biorefineries.
Collapse
Affiliation(s)
- Vivek Narisetty
- School of Water, Energy and Environment, Cranfield University Cranfield MK43 0AL UK +44 (0)1234754786
| | - Rylan Cox
- School of Water, Energy and Environment, Cranfield University Cranfield MK43 0AL UK +44 (0)1234754786
- School of Aerospace, Transport and Manufacturing, Cranfield University Cranfield MK43 0AL UK
| | - Rajesh Bommareddy
- Department of Applied Sciences, Northumbria University Newcastle upon Tyne NE1 8ST UK
| | - Deepti Agrawal
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR- Indian Institute of Petroleum Mohkampur Dehradun 248005 India
| | - Ejaz Ahmad
- Department of Chemical Engineering, Indian Institute of Technology (ISM) Dhanbad 826004 India
| | - Kamal Kumar Pant
- Department of Chemical Engineering, Indian Institute of Technology Delhi New Delhi 110016 India
| | - Anuj Kumar Chandel
- Department of Biotechnology, Engineering School of Lorena (EEL), University of São Paulo Lorena 12.602.810 Brazil
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University Seoul 05029 Republic of Korea
| | - Dinesh Kumar
- School of Bioengineering & Food Technology, Shoolini University of Biotechnology and Management Sciences Solan 173229 Himachal Pradesh India
| | - Parmeswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Thiruvananthapuram 695 019 Kerala India
| | | | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University Cranfield MK43 0AL UK +44 (0)1234754786
- Department of Chemical Engineering, Indian Institute of Technology Delhi New Delhi 110016 India
| |
Collapse
|
7
|
He M, Sun Y, Han B. Green Carbon Science: Efficient Carbon Resource Processing, Utilization, and Recycling Towards Carbon Neutrality. Angew Chem Int Ed Engl 2021; 61:e202112835. [PMID: 34919305 DOI: 10.1002/anie.202112835] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 11/10/2022]
Abstract
Green carbon science is defined as "Study and optimization of the transformation of carbon containing compounds and the relevant processes involved in the entire carbon cycle from carbon resource processing, carbon energy utilization, and carbon recycling to use carbon resources efficiently and minimize the net CO2 emission." [1] Green carbon science is related closely to carbon neutrality, and the relevant fields have developed quickly in the last decade. In this Minireview, we proposed the concept of carbon energy index, and the recent progresses in petroleum refining, production of liquid fuels, chemicals, and materials using coal, methane, CO2, biomass, and waste plastics are highlighted in combination with green carbon science, and an outlook for these important fields is provided in the final section.
Collapse
Affiliation(s)
- Mingyuan He
- East China Normal University, Department of Chemistry, 200062, Shanghai, CHINA
| | - Yuhan Sun
- Chinese Academy of Sciences, Shanghai Advanced Research Institute, 201203, Shanghai, CHINA
| | - Buxing Han
- Chinese Academy of Sciences, Institute of Chemistry, Beiyijie number 2, Zhongguancun, 100190, Beijing, CHINA
| |
Collapse
|
8
|
Pakzati M, Abedini H, Hamoule T, Shariati A. Equilibrium and dynamic investigation of butanol adsorption from acetone–butanol–ethanol (ABE) model solution using a vine shoot based activated carbon. ADSORPTION 2021. [DOI: 10.1007/s10450-021-00345-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Qaseem MF, Shaheen H, Wu AM. Cell wall hemicellulose for sustainable industrial utilization. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2021; 144:110996. [DOI: 10.1016/j.rser.2021.110996] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
10
|
Etteh CC, Ibiyeye AO, Jelani FB, Rasheed AA, Ette OJ, Victor I. Production of biobutanol using Clostridia Spp through novel ABE continuous fermentation of selected waste streams and industrial by-products. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
11
|
Su Z, Wang F, Xie Y, Xie H, Mao G, Zhang H, Song A, Zhang Z. Reassessment of the role of CaCO 3 in n-butanol production from pretreated lignocellulosic biomass by Clostridium acetobutylicum. Sci Rep 2020; 10:17956. [PMID: 33087773 PMCID: PMC7578090 DOI: 10.1038/s41598-020-74899-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 10/05/2020] [Indexed: 12/25/2022] Open
Abstract
In this study, the role of CaCO3 in n-butanol production was further investigated using corn straw hydrolysate (CSH) media by Clostridium acetobutylicum CICC 8016. CaCO3 addition stimulated sugars utilization and butanol production. Further study showed that calcium salts addition to CSH media led to the increase in Ca2+ concentration both intracellularly and extracellularly. Interestingly, without calcium salts addition, intracellular Ca2+ concentration in the synthetic P2 medium was much higher than that in the CSH medium despite the lower extracellular Ca2+ concentrations in the P2 medium. These results indicated that without additional calcium salts, Ca2+ uptake by C. acetobutylicum CICC 8016 in the CSH medium may be inhibited by non-sugar biomass degradation compounds, such as furans, phenolics and organic acids. Comparative proteomics analysis results showed that most enzymes involved in glycolysis, redox balance and amino acids metabolism were up-regulated with CaCO3 addition. This study provides further insights into the role of CaCO3 in n-butanol production using real biomass hydrolysate.
Collapse
Affiliation(s)
- Zengping Su
- Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), College of Life Science, Henan Agricultural University, No. 63, Nongye Road, Jinshui District, Zhengzhou, 450002, Henan Province, China
| | - Fengqin Wang
- Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), College of Life Science, Henan Agricultural University, No. 63, Nongye Road, Jinshui District, Zhengzhou, 450002, Henan Province, China.
| | - Yaohuan Xie
- Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), College of Life Science, Henan Agricultural University, No. 63, Nongye Road, Jinshui District, Zhengzhou, 450002, Henan Province, China
| | - Hui Xie
- Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), College of Life Science, Henan Agricultural University, No. 63, Nongye Road, Jinshui District, Zhengzhou, 450002, Henan Province, China
| | - Guotao Mao
- Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), College of Life Science, Henan Agricultural University, No. 63, Nongye Road, Jinshui District, Zhengzhou, 450002, Henan Province, China
| | - Hongsen Zhang
- Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), College of Life Science, Henan Agricultural University, No. 63, Nongye Road, Jinshui District, Zhengzhou, 450002, Henan Province, China
| | - Andong Song
- Key Laboratory of Agricultural Microbial Enzyme Engineering (Ministry of Agriculture), College of Life Science, Henan Agricultural University, No. 63, Nongye Road, Jinshui District, Zhengzhou, 450002, Henan Province, China.
| | - Zhanying Zhang
- Centre for Agriculture and the Bioeconomy, Institute for Future Environments, Queensland University of Technology, Brisbane, QLD, 4000, Australia.,School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| |
Collapse
|
12
|
Sangavai C, Chellapandi P. Growth-associated catabolic potential of Acetoanaerobium sticklandii DSM 519 on gelatin and amino acids. J Basic Microbiol 2020; 60:882-893. [PMID: 32812241 DOI: 10.1002/jobm.202000292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/31/2020] [Accepted: 08/09/2020] [Indexed: 11/07/2022]
Abstract
Acetoanaerobium sticklandii DSM 519 is a hyperammonia-producing anaerobe that catabolizes proteins and amino acids into organic solvents and volatile acids via the Stickland reactions. However, the specific growth rate and metabolic capability of this organism on proteins and amino acids are not yet known. Therefore, the present study was intended to evaluate its specific growth rate and metabolic potential on gelatin and amino acids in the experimental media. We carried out metabolic assay experiments to calculate its ability to utilize pure gelatin, single amino acids, and amino acid pairs at different growth phases. The results of this study show that complete assimilation of gelatin was achieved by its log-phase culture. The subsequent fermentation of amino acids was much faster than gelatin hydrolysis. The rate of gelatin degradation was associated with the growth and catabolic rates of this organism. Many amino acids were not assimilated completely for its growth and energy conservation. A log-phase culture of this organism preferably utilized l-cysteine, l-arginine, and l-serine, and released more fraction of ammonia. As shown by our analysis, the catabolic rates of these amino acids were determined by the rates of respective enzymes involved in amino acid catabolic pathways and feedback repression of ammonia. The growth kinetic data indicated that at the initial growth stage, a metabolic shift in its solventogenesis and acidogenesis phases was associated with catabolism of certain amino acids. Thus, the results of this study provide a new insight to exploit its log-phase culture as a starter for the production of biofuel components from gelatin processing industries.
Collapse
Affiliation(s)
- Chinnadurai Sangavai
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Paulchamy Chellapandi
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
13
|
Li H, Wang H, Miao Q, Du J, Li C, Fang J. High-Efficiency Adsorbent for Biobutanol Separation Developed from Lignin by Solvents Fractionation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c01311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hao Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
- Guangdong Provincial Key Lab of Green Chemical Product Technology, Wushan Road, Guangzhou 510000, PR China
- Tianjin Key Laboratory of Chemical Process Safety, Tianjin 300401, China
| | - Haoyang Wang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Qingya Miao
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Jingjing Du
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Chunli Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
| | - Jing Fang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, China
- Tianjin Key Laboratory of Chemical Process Safety, Tianjin 300401, China
| |
Collapse
|
14
|
Development of sequential and simultaneous bacterial cultures to hydrolyse and detoxify wood pre-hydrolysate for enhanced acetone-butanol-ethanol (ABE) production. Enzyme Microb Technol 2019; 133:109438. [PMID: 31874697 DOI: 10.1016/j.enzmictec.2019.109438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/12/2019] [Accepted: 10/01/2019] [Indexed: 12/27/2022]
Abstract
The use of microorganisms is a promising option for an eco-efficient and successful conversion of hardwood hemicelluloses to biofuels. The focus of this work is the treatment of hemicellulosic pre-hydrolysate by flocculation, followed by simultaneous or separate detoxification with Ureibacillus thermosphaericus and Cupriavidus taiwanensis co-culture, and hydrolysis with Paenibacillus campinasensis. A reduction of phenolic compounds was achieved mainly after flocculation, applied as a first detoxification step, but no increase in sugars concentration was observed. The ABE fermentation of the hydrolysate obtained from the simultaneous hydrolysis and detoxification produced 6.8 g L-1 of butanol after 116 h, which was higher than that generated with xylose synthetic medium. The higher biofuel concentration in the hydrolysate is attributed to the existence of carbon sources, other than xylose.
Collapse
|
15
|
Sangavai C, Chellapandi P. A metabolic study to decipher amino acid catabolism-directed biofuel synthesis in Acetoanaerobium sticklandii DSM 519. Amino Acids 2019; 51:1397-1407. [PMID: 31471743 DOI: 10.1007/s00726-019-02777-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 08/22/2019] [Indexed: 01/15/2023]
Abstract
Acetoanaerobium sticklandii DSM 519 is a hyper-ammonia-producing anaerobe. It has the ability to produce organic solvents and acids from protein catabolism through Stickland reactions and specialized pathways. Nevertheless, its protein catabolism-directed biofuel production has not yet been understood. The present study aimed to decipher such growth-associated metabolic potential of this organism at different growth phases using metabolic profiling. A seed culture of this organism was grown separately in metabolic assay media supplemented with gelatin and or a mixture of amino acids. The extracellular metabolites produced by this organism were qualitatively analyzed by gas chromatography-mass spectrometry platform. The residual amino acids after protein degradation and amino acids assimilation were identified and quantitatively measured by high-performance liquid chromatography (HPLC). Organic solvents and acids produced by this organism were detected and the quantity of them determined with HPLC. Metabolic profiling data confirmed the presence of amino acid catabolic products including tyramine, cadaverine, methylamine, and putrescine in fermented broth. It also found products including short-chain fatty acids and organic solvents of the Stickland reactions. It reported that amino acids were more appropriate for its growth yield compared to gelatin. Results of quantitative analysis of amino acids indicated that many amino acids either from gelatin or amino acid mixture were catabolised at a log-growth phase. Glycine and proline were poorly consumed in all growth phases. This study revealed that apart from Stickland reactions, a specialized system was established in A. sticklandii for protein catabolism-directed biofuel production. Acetone-butanol-ethanol (ABE), acetic acid, and butyric acid were the most important biofuel components produced by this organism. The production of these components was achieved much more on gelatin than amino acids. Thus, A. sticklandii is suggested herein as a potential organism to produce butyric acid along with ABE from protein-based wastes (gelatin) in bio-energy sectors.
Collapse
Affiliation(s)
- C Sangavai
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - P Chellapandi
- Molecular Systems Engineering Lab, Department of Bioinformatics, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
| |
Collapse
|
16
|
Functional prediction, characterization, and categorization of operome from Acetoanaerobium sticklandii DSM 519. Anaerobe 2019; 61:102088. [PMID: 31425748 DOI: 10.1016/j.anaerobe.2019.102088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 01/05/2023]
Abstract
Acetoanaerobium sticklandii DSM 519 is a hyper-ammonia producing anaerobic bacterium that can be able utilizes amino acids as sole carbon and energy sources for its growth and energetic metabolism. A lack of knowledge on its molecular machinery and 30.5% conserved hypothetical proteins (HPs; operome) hinders the successful utility in biofuel applications. In this study, we have predicted, characterized and categorized its operome whose functions are still not determined accurately using a combined bioinformatics approach. The functions of 64 of the 359 predicted HPs are involved in diverse metabolic subsystems. A. sticklandii operome has consisted of 16% Rossmann fold and 46% miscellaneous folds. Subsystems-based technology has classified 51 HPs contributing to the small-molecular reactions, 26 in macromolecular reactions and 12 in the biosynthesis of cofactors, prosthetic groups and electron carriers. A generality of functions predicted from its operome contributed to the cell cycle, amino acid metabolism, membrane transport, and regulatory processes. Many of them have duplicated functions as paralogs in this genome. A. sticklandii has the ability to compete with invading microorganisms and tolerate abiotic stresses, which can be overwhelmed by the predicted functions of its operome. Results of this study revealed that it has specialized systems for amino acid catabolism-directed solventogenesis and acidogenesis but the level of gene expression may determine the metabolic function in amino acid fermenting niches in the rumina of cattle. As shown by our analysis, the predicted functions of its operome allow us for a better understanding of the growth and physiology at systems-scale.
Collapse
|
17
|
Two-Stage Pretreatment to Improve Saccharification of Oat Straw and Jerusalem Artichoke Biomass. ENERGIES 2019. [DOI: 10.3390/en12091715] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pretreatment is a necessary step when lignocellulosic biomass is to be converted to simple sugars; however single-stage pretreatment is often insufficient to guarantee full availability of polymeric sugars from raw material to hydrolyzing enzymes. In this work, the two-stage pretreatment with use of acid (H2SO4, HNO3) and alkali (NaOH) was applied in order to increase the susceptibility of Jerusalem artichoke stalks (JAS) and oat straw (OS) biomass on the enzymatic attack. The effect of the concentration of reagents (2% and 5% w/v) and the order of acid and alkali sequence on the composition of remaining solids and the efficiency of enzymatic hydrolysis was evaluated. It was found that after combined pretreatment process, due to the removal of hemicellulose and lignin, the content of cellulose in pretreated biomass increased to a large extent, reaching almost 90% d.m. and 95% d.m., in the case of JAS and OS, respectively. The enzymatic hydrolysis of solids remaining after pretreatment resulted in the formation of up to 45 g/L of glucose, for both JAS and OS. The highest glucose yield was achieved after pretreatment with 5% nitric acid followed by NaOH, and 90.6% and 97.6% of efficiency were obtained, respectively for JAS and OS.
Collapse
|
18
|
Wang D, Liu Z, Liu Q. One-Pot Synthesis of Methyl-Substituted Benzenes and Methyl-Substituted Naphthalenes from Acetone and Calcium Carbide. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dong Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Zhenyu Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Qingya Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| |
Collapse
|
19
|
Theiri M, Chadjaa H, Marinova M, Jolicoeur M. Combining chemical flocculation and bacterial co-culture of Cupriavidus taiwanensis and Ureibacillus thermosphaericus to detoxify a hardwood hemicelluloses hydrolysate and enable acetone-butanol-ethanol fermentation leading to butanol. Biotechnol Prog 2018; 35:e2753. [PMID: 30468318 DOI: 10.1002/btpr.2753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 12/25/2022]
Abstract
Butanol, a fuel with better characteristics than ethanol, can be produced via acetone-butanol-ethanol (ABE) fermentation using lignocellulosic biomass as a carbon source. However, many inhibitors present in the hydrolysate limit the yield of the fermentation process. In this work, a detoxification technology combining flocculation and biodetoxification within a bacterial co-culture composed of Ureibacillus thermosphaericus and Cupriavidus taiwanensis is presented for the first time. Co-culture-based strategies to detoxify filtered and unfiltered hydrolysates have been investigated. The best results of detoxification were obtained for a two-step approach combining flocculation to biodetoxification. This sequential process led to a final phenolic compounds concentration of 1.4 g/L, a value close to the minimum inhibitory level observed for flocculated hydrolysate (1.1 g/L). The generated hydrolysate was then fermented with Clostridium acetobutylicum ATCC 824 for 120 h. A final butanol production of 8 g/L was obtained, although the detoxified hydrolysate was diluted to reach 0.3 g/L of phenolics to ensure noninhibitory conditions. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2753, 2019.
Collapse
Affiliation(s)
- Mariem Theiri
- Research Laboratory in Applied Metabolic Engineering, Dept. of Chemical Engineering, École Polytechnique de Montréal, J.-A. -Bombardier Pavilion, 2900 Édouard-Montpetit Blvd., Montréal, QC, H3T 1J4, Canada.,Centre National en Électrochimie et en Technologies Environnementales, 5230, Boulevard Royal, Shawinigan, QC, G9N 4R6, Canada
| | - Hassan Chadjaa
- Centre National en Électrochimie et en Technologies Environnementales, 5230, Boulevard Royal, Shawinigan, QC, G9N 4R6, Canada
| | - Mariya Marinova
- Dept. of Chemistry and Chemical Engineering, Royal Military College of Canada, 13 General Crerar Crescen Kingston, ON, K7K 7B4, Canada
| | - Mario Jolicoeur
- Research Laboratory in Applied Metabolic Engineering, Dept. of Chemical Engineering, École Polytechnique de Montréal, J.-A. -Bombardier Pavilion, 2900 Édouard-Montpetit Blvd., Montréal, QC, H3T 1J4, Canada
| |
Collapse
|
20
|
Ravindran R, Hassan SS, Williams GA, Jaiswal AK. A Review on Bioconversion of Agro-Industrial Wastes to Industrially Important Enzymes. Bioengineering (Basel) 2018; 5:E93. [PMID: 30373279 PMCID: PMC6316327 DOI: 10.3390/bioengineering5040093] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 01/21/2023] Open
Abstract
Agro-industrial waste is highly nutritious in nature and facilitates microbial growth. Most agricultural wastes are lignocellulosic in nature; a large fraction of it is composed of carbohydrates. Agricultural residues can thus be used for the production of various value-added products, such as industrially important enzymes. Agro-industrial wastes, such as sugar cane bagasse, corn cob and rice bran, have been widely investigated via different fermentation strategies for the production of enzymes. Solid-state fermentation holds much potential compared with submerged fermentation methods for the utilization of agro-based wastes for enzyme production. This is because the physical⁻chemical nature of many lignocellulosic substrates naturally lends itself to solid phase culture, and thereby represents a means to reap the acknowledged potential of this fermentation method. Recent studies have shown that pretreatment technologies can greatly enhance enzyme yields by several fold. This article gives an overview of how agricultural waste can be productively harnessed as a raw material for fermentation. Furthermore, a detailed analysis of studies conducted in the production of different commercially important enzymes using lignocellulosic food waste has been provided.
Collapse
Affiliation(s)
- Rajeev Ravindran
- School of Food Science and Environmental Health, College of Sciences and Health, Dublin Institute of Technology, Cathal Brugha Street, D01 HV58 Dublin, Ireland.
- School of Biological Sciences, College of Sciences and Health, Dublin Institute of Technology, Kevin Street, D08 NF82 Dublin, Ireland.
| | - Shady S Hassan
- School of Food Science and Environmental Health, College of Sciences and Health, Dublin Institute of Technology, Cathal Brugha Street, D01 HV58 Dublin, Ireland.
- School of Biological Sciences, College of Sciences and Health, Dublin Institute of Technology, Kevin Street, D08 NF82 Dublin, Ireland.
| | - Gwilym A Williams
- School of Biological Sciences, College of Sciences and Health, Dublin Institute of Technology, Kevin Street, D08 NF82 Dublin, Ireland.
| | - Amit K Jaiswal
- School of Food Science and Environmental Health, College of Sciences and Health, Dublin Institute of Technology, Cathal Brugha Street, D01 HV58 Dublin, Ireland.
| |
Collapse
|
21
|
Nitric Acid Pretreatment of Jerusalem Artichoke Stalks for Enzymatic Saccharification and Bioethanol Production. ENERGIES 2018. [DOI: 10.3390/en11082153] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This paper evaluated the effectiveness of nitric acid pretreatment on the hydrolysis and subsequent fermentation of Jerusalem artichoke stalks (JAS). Jerusalem artichoke is considered a potential candidate for producing bioethanol due to its low soil and climate requirements, and high biomass yield. However, its stalks have a complexed lignocellulosic structure, so appropriate pretreatment is necessary prior to enzymatic hydrolysis, to enhance the amount of sugar that can be obtained. Nitric acid is a promising catalyst for the pretreatment of lignocellulosic biomass due to the high efficiency with which it removes hemicelluloses. Nitric acid was found to be the most effective catalyst of JAS biomass. A higher concentration of glucose and ethanol was achieved after hydrolysis and fermentation of 5% (w/v) HNO3-pretreated JAS, leading to 38.5 g/L of glucose after saccharification, which corresponds to 89% of theoretical enzymatic hydrolysis yield, and 9.5 g/L of ethanol. However, after fermentation there was still a significant amount of glucose in the medium. In comparison to more commonly used acids (H2SO4 and HCl) and alkalis (NaOH and KOH), glucose yield (% of theoretical yield) was approximately 47–74% higher with HNO3. The fermentation of 5% nitric-acid pretreated hydrolysates with the absence of solid residues, led to an increase in ethanol yield by almost 30%, reaching 77–82% of theoretical yield.
Collapse
|
22
|
Co-fermentation of cellobiose and xylose by mixed culture of recombinant Saccharomyces cerevisiae and kinetic modeling. PLoS One 2018; 13:e0199104. [PMID: 29940003 PMCID: PMC6016917 DOI: 10.1371/journal.pone.0199104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 05/31/2018] [Indexed: 11/19/2022] Open
Abstract
Efficient conversion of cellulosic sugars in cellulosic hydrolysates is important for economically viable production of biofuels from lignocellulosic biomass, but the goal remains a critical challenge. The present study reports a new approach for simultaneous fermentation of cellobiose and xylose by using the co-culture consisting of recombinant Saccharomyces cerevisiae specialist strains. The co-culture system can provide competitive advantage of modularity compared to the single culture system and can be tuned to deal with fluctuations in feedstock composition to achieve robust and cost-effective biofuel production. This study characterized fermentation kinetics of the recombinant cellobiose-consuming S. cerevisiae strain EJ2, xylose-consuming S. cerevisiae strain SR8, and their co-culture. The motivation for kinetic modeling was to provide guidance and prediction of using the co-culture system for simultaneous fermentation of mixed sugars with adjustable biomass of each specialist strain under different substrate concentrations. The kinetic model for the co-culture system was developed based on the pure culture models and incorporated the effects of product inhibition, initial substrate concentration and inoculum size. The model simulations were validated by results from independent fermentation experiments under different substrate conditions, and good agreement was found between model predictions and experimental data from batch fermentation of cellobiose, xylose and their mixtures. Additionally, with the guidance of model prediction, simultaneous co-fermentation of 60 g/L cellobiose and 20 g/L xylose was achieved with the initial cell densities of 0.45 g dry cell weight /L for EJ2 and 0.9 g dry cell weight /L SR8. The results demonstrated that the kinetic modeling could be used to guide the design and optimization of yeast co-culture conditions for achieving simultaneous fermentation of cellobiose and xylose with improved ethanol productivity, which is critically important for robust and efficient renewable biofuel production from lignocellulosic biomass.
Collapse
|