1
|
Liu H, Xing F, Yu P, Shakya S, Peng K, Liu M, Xiang Z, Ritz U. Integrated design and application of stimuli-responsive metal-organic frameworks in biomedicine: current status and future perspectives. J Mater Chem B 2024; 12:8235-8266. [PMID: 39058314 DOI: 10.1039/d4tb00768a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
In recent years, metal-organic frameworks (MOFs) have garnered widespread attention due to their distinctive attributes, such as high surface area, tunable properties, biodegradability, extremely low density, high loading capacity, diverse chemical functionalities, thermal stability, well-defined pore sizes, and molecular dimensions. Increasingly, biomedical researchers have turned their focus towards their multifaceted development. Among these, stimuli-responsive MOFs, with their unique advantages, have captured greater interest from researchers. This review will delve into the merits and drawbacks of both endogenous and exogenous stimuli-responsive MOFs, along with their application directions. Furthermore, it will outline the characteristics of different synthesis routes of MOFs, exploring various design schemes and modification strategies and their impacts on the properties of MOF products, as well as how to control them. Additionally, we will survey different types of stimuli-responsive MOFs, discussing the significance of various MOF products reported in biomedical applications. We will categorically summarize different strategies such as anticancer therapy, antibacterial treatment, tissue repair, and biomedical imaging, as well as insights into the development of novel MOFs nanomaterials in the future. Finally, this review will conclude by summarizing the challenges in the development of stimuli-responsive MOFs in the field of biomedicine and providing prospects for future research endeavors.
Collapse
Affiliation(s)
- Hao Liu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, 610041 Chengdu, China.
| | - Fei Xing
- Department of Pediatric Surgery, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Sujan Shakya
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, 610041 Chengdu, China.
| | - Kun Peng
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiang Xi, China
| | - Ming Liu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, 610041 Chengdu, China.
| | - Zhou Xiang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, 610041 Chengdu, China.
- Department of Orthopedics, Sanya People's Hospital, 572000 Sanya, Hainan, China
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
2
|
Shubhangi, Nandi I, Rai SK, Chandra P. MOF-based nanocomposites as transduction matrices for optical and electrochemical sensing. Talanta 2024; 266:125124. [PMID: 37657374 DOI: 10.1016/j.talanta.2023.125124] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
Metal Organic Frameworks (MOFs), a class of crystalline microporous materials have been into research limelight lately due to their commendable physio-chemical properties and easy fabrication methods. They have enormous surface area which can be a working ground for innumerable molecule adhesions and site for potential sensor matrices. Their biocompatibility makes them valuable for in vitro detection systems but a compromised conductivity requires a lot of surface engineering of these molecules for their usage in electrochemical biosensors. However, they are not just restricted to a single type of transduction system rather can also be modified to achieve feat as optical (colorimetry, luminescence) and electro-luminescent biosensors. This review emphasizes on recent advancements in the area of MOF-based biosensors with focus on various MOF synthesis methods and their general properties along with selective attention to electrochemical, optical and opto-electrochemical hybrid biosensors. It also summarizes MOF-based biosensors for monitoring free radicals, metal ions, small molecules, macromolecules and cells in a wide range of real matrices. Extensive tables have been included for understanding recent trends in the field of MOF-composite probe fabrication. The article sums up the future scope of these materials in the field of biosensors and enlightens the reader with recent trends for future research scope.
Collapse
Affiliation(s)
- Shubhangi
- School of Biomedical Engineering, Indian Institute of Technology Laboratory (BHU) Varanasi, Uttar Pradesh, 221005, India; Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, India
| | - Indrani Nandi
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, India
| | - S K Rai
- School of Biomedical Engineering, Indian Institute of Technology Laboratory (BHU) Varanasi, Uttar Pradesh, 221005, India
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
3
|
Huo L, Wang L, Li J, Pu Y, Xuan K, Qiao C, Yang H. Cerium doped Zr-based metal-organic framework as catalyst for direct synthesis of dimethyl carbonate from CO2 and methanol. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Shahin R, Yousefi M, Ziyadi H, Bikhof M, Hekmati M. pH-Responsive and magnetic Fe3O4@UiO-66-NH2@PEI nanocomposite as drug nanocarrier: Loading and release study of Imatinib. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Kar AK, Srivastava R. Improving the Glucose to Fructose Isomerization via Epitaxial‐Grafting of Niobium in UIO‐66 framework. ChemCatChem 2022. [DOI: 10.1002/cctc.202200721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Rajendra Srivastava
- Indian Institute of Technology Ropar Chemistry Nangal RoadRupnagar 140001 Rupnagar INDIA
| |
Collapse
|
6
|
Fujimoto Y, Shu Y, Taniguchi Y, Miyake K, Uchida Y, Tanaka S, Nishiyama N. Vapor-assisted crystallization of in situ glycine-modified UiO-66 with enhanced CO 2 adsorption. NEW J CHEM 2022. [DOI: 10.1039/d1nj05284e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Vapor consisting of DMF and HCl promotes crystallization of in situ glycine-modified UiO-66.
Collapse
Affiliation(s)
- Yugo Fujimoto
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Yasuhiro Shu
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Yurika Taniguchi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Koji Miyake
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Yoshiaki Uchida
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Shunsuke Tanaka
- Department of Chemical, Energy and Environmental Engineering, Faculty of Environmental and Urban Engineering, Kansai University, 3-3-35 Yamate-cho, Suita-Shi, Osaka, 564-8680, Japan
| | - Norikazu Nishiyama
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
7
|
Sohrabi H, Javanbakht S, Oroojalian F, Rouhani F, Shaabani A, Majidi MR, Hashemzaei M, Hanifehpour Y, Mokhtarzadeh A, Morsali A. Nanoscale Metal-Organic Frameworks: Recent developments in synthesis, modifications and bioimaging applications. CHEMOSPHERE 2021; 281:130717. [PMID: 34020194 DOI: 10.1016/j.chemosphere.2021.130717] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Porous Metal-Organic Frameworks (MOFs) have emerged as eye-catching materials in recent years. They are widely used in numerous fields of chemistry thanks to their desirable properties. MOFs have a key role in the development of bioimaging platforms that are hopefully expected to effectually pave the way for accurate and selective detection and diagnosis of abnormalities. Recently, many types of MOFs have been employed for detection of RNA, DNA, enzyme activity and small-biomolecules, as well as for magnetic resonance imaging (MRI) and computed tomography (CT), which are valuable methods for clinical analysis. The optimal performance of the MOF in the bio-imaging field depends on the core structure, synthesis method and modifications processes. In this review, we have attempted to present crucial parameters for designing and achieving an efficient MOF as bioimaging platforms, and provide a roadmap for researchers in this field. Moreover, the influence of modifications/fractionalizations on MOFs performance has been thoroughly discussed and challenging problems have been extensively addressed. Consideration is mainly focused on the principal concepts and applications that have been achieved to modify and synthesize advanced MOFs for future applications.
Collapse
Affiliation(s)
- Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Siamak Javanbakht
- Faculty of Chemistry, Shahid Beheshti University, G.C., P.O. Box 19396-4716, Tehran, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farzaneh Rouhani
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, G.C., P.O. Box 19396-4716, Tehran, Iran
| | - Mir Reza Majidi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mahmoud Hashemzaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol. Iran
| | - Younes Hanifehpour
- Department of Chemistry, Sayyed Jamaleddin Asadabadi University, Asadabad, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| |
Collapse
|
8
|
Fu J, Wu YN. A Showcase of Green Chemistry: Sustainable Synthetic Approach of Zirconium-Based MOF Materials. Chemistry 2021; 27:9967-9987. [PMID: 33955075 DOI: 10.1002/chem.202005151] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 11/08/2022]
Abstract
Zirconium-based metal-organic framework materials (Zr-MOFs) have more practical usage over most conventional benchmark porous materials and even many other MOFs due to the excellent structural stability, rich coordination forms, and various active sites. However, their mass-production and application are restricted by the high-cost raw materials, complex synthesis procedures, harsh reaction conditions, and unexpected environmental impact. Based on the principles of "Green Chemistry", considerable efforts have been done for breaking through the limitations, and significant progress has been made in the sustainable synthesis of Zr-MOFs over the past decade. In this review, the advancements of green raw materials and green synthesis methods in the synthesis of Zr-MOFs are reviewed, along with the corresponding drawbacks. The challenges and prospects are discussed and outlooked, expecting to provide guidance for the acceleration of the industrialization and commercialization of Zr-MOFs.
Collapse
Affiliation(s)
- Jiarui Fu
- College of Environmental Science and Engineering State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Rd 1239, 200092, Shanghai, P.R. China.,Shanghai Institute of Pollution Control and Ecological Security, Siping Rd 1239, 200092, Shanghai, P.R. China
| | - Yi-Nan Wu
- College of Environmental Science and Engineering State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Rd 1239, 200092, Shanghai, P.R. China.,Shanghai Institute of Pollution Control and Ecological Security, Siping Rd 1239, 200092, Shanghai, P.R. China
| |
Collapse
|
9
|
Ru J, Wang X, Wang F, Cui X, Du X, Lu X. UiO series of metal-organic frameworks composites as advanced sorbents for the removal of heavy metal ions: Synthesis, applications and adsorption mechanism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111577. [PMID: 33160184 DOI: 10.1016/j.ecoenv.2020.111577] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/16/2020] [Accepted: 10/27/2020] [Indexed: 05/25/2023]
Abstract
Heavy metal pollution has threatened the ecological environment and human health, therefore, effective removal of these toxic pollutants from various complex substrates is of great significance. So far, adsorption is still one of the most effective approaches. Metal-organic frameworks (MOFs), which are porous crystalline materials consisting of metal ions or metal clusters and organic ligands through coordination bonds. Due to their high surface area, porosity, as well as good chemical/thermal stability, the materials have recently attracted great attention in environmental analytical chemistry. This review mainly focused on the recent studies about the applications of UiO series MOFs and their composites as the emerging MOFs, which have been used effectively for the adsorption and removal of diverse heavy metal ions from a variety of environmental samples as novel adsorption materials. Moreover, an elaboration about UiO-MOFs and its composites including the synthetic methods and the applications of these materials in the removal of heavy metal ions were presented in detail. In addition, the adsorption characteristics and mechanism of UiO-MOFs as solid sorbents for heavy metal ions were discussed, including adsorption isotherms equation, adsorption thermodynamics, and kinetics. To this end, the developing trends of MOF-based composites for the removal of heavy metal ions had also prospected. This review will provide a new idea for the study of the adsorption mechanism of heavy metal ions on sorbents and the development of high-performance media for the efficient removal of pollutants in wastewater.
Collapse
Affiliation(s)
- Jing Ru
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Xuemei Wang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China.
| | - Fangbing Wang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Xinglan Cui
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Xinzhen Du
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, PR China.
| |
Collapse
|
10
|
Zhang H, Lu X, Yang L, Hu Y, Yuan M, Wang C, Liu Q, Yue F, Zhou D, Xia Q. Efficient air epoxidation of cycloalkenes over bimetal-organic framework ZnCo-MOF materials. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Zhao Y, Jing J, Yan N, Han ML, Yang GP, Ma LF. Different Benzendicarboxylate-Directed Structural Variations and Properties of Four New Porous Cd(II)-Pyridyl-Triazole Coordination Polymers. Front Chem 2020; 8:616468. [PMID: 33392155 PMCID: PMC7773847 DOI: 10.3389/fchem.2020.616468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
Four new different porous crystalline Cd(II)-based coordination polymers (CPs), i. e., [Cd(mdpt)2]·2H2O (1), [Cd2(mdpt)2(m-bdc)(H2O)2] (2), [Cd(Hmdpt)(p-bdc)]·2H2O (3), and [Cd3(mdpt)2(bpdc)2]·2.5NMP (4), were obtained successfully by the assembly of Cd(II) ions and bitopic 3-(3-methyl-2-pyridyl)-5-(4-pyridyl)-1,2,4-triazole (Hmdpt) in the presence of various benzendicarboxylate ligands, i.e., 1,3/1,4-benzenedicarboxylic acid (m-H2bdc, p-H2bdc) and biphenyl-4,4'-bicarboxylate (H2bpdc). Herein, complex 1 is a porous 2-fold interpenetrated four-connected 3D NbO topological framework based on the mdpt- ligand; 2 reveals a two-dimensional (2D) hcb network. Interestingly, 3 presents a three-dimensional (3D) rare interpenetrated double-insertion supramolecular net via 2D ···ABAB··· layers and can be viewed as an fsh topological net, while complex 4 displays a 3D sqc117 framework. Then, the different gas sorption performances were carried out carefully for complexes 1 and 4, the results of which showed 4 has preferable sorption than that of 1 and can be the potential CO2 storage and separation material. Furthermore, the stability and luminescence of four complexes were performed carefully in the solid state.
Collapse
Affiliation(s)
- Ying Zhao
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, China
| | - Jin Jing
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, China
| | - Ning Yan
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, China
| | - Min-Le Han
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, China
| | - Guo-Ping Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an, China
| | - Lu-Fang Ma
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, China
| |
Collapse
|
12
|
Zhang Y, Zhang X, Chen Z, Otake KI, Peterson GW, Chen Y, Wang X, Redfern LR, Goswami S, Li P, Islamoglu T, Wang B, Farha OK. A Flexible Interpenetrated Zirconium-Based Metal-Organic Framework with High Affinity toward Ammonia. CHEMSUSCHEM 2020; 13:1710-1714. [PMID: 32026595 DOI: 10.1002/cssc.202000306] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Indexed: 06/10/2023]
Abstract
Flexible metal-organic frameworks (MOFs) are highly attractive porous crystalline materials presenting structural changes when exposed to external stimuli, the mechanism of which is often difficult to glean, owing to their complex and dynamic nature. Herein, a flexible interpenetrated Zr-MOF, NU-1401, composed of rare 4-connected Zr6 nodes and tetratopic naphthalenediimide (NDI)-based carboxylate linkers, was designed. The intra-framework pore opening deformation and inter-framework motions, when subjected to different solvent molecules, were investigated by single-crystal XRD. The distance and overlap angle between the stacked NDI pairs in the entangled structure could be finely tuned, and the interactions between NDI and solvent molecules led to solvochromism. Furthermore, the presence of electron-deficient NDI units in the linker and acid sites on the node of the interpenetrated porous structure offered high density of adsorption sites for ammonia molecules, resulting in high uptake at low pressures.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA
| | - Xuan Zhang
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA
| | - Zhijie Chen
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA
| | - Ken-Ichi Otake
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA
| | - Gregory W Peterson
- Chemical Biological Center, U.S. Army Combat Capabilities Development Command, 8198 Blackhawk Road, Aberdeen Proving Ground, Maryland, 21010, USA
| | - Yongwei Chen
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA
| | - Xingjie Wang
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA
| | - Louis R Redfern
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA
| | - Subhadip Goswami
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA
| | - Peng Li
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA
| | - Timur Islamoglu
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA
| | - Bo Wang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, P.R. China
| | - Omar K Farha
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208-3113, USA
| |
Collapse
|
13
|
Lu N, Zhang X, Yan X, Pan D, Fan B, Li R. Synthesis of novel mesoporous sulfated zirconia nanosheets derived from Zr-based metal–organic frameworks. CrystEngComm 2020. [DOI: 10.1039/c9ce01456j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Flower-like mesoporous sulfated zirconia nanosheets (SZNs) were developed by pyrolysis of in situ sulfated Zr-MOFs for the first time.
Collapse
Affiliation(s)
- Ningyue Lu
- College of Chemistry and Chemical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - Xuelian Zhang
- College of Chemistry and Chemical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - Xiaoliang Yan
- College of Chemistry and Chemical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - Dahai Pan
- College of Chemistry and Chemical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - Binbin Fan
- College of Chemistry and Chemical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- China
| | - Ruifeng Li
- College of Chemistry and Chemical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- China
- Key Laboratory of Coal Science and Technology MOE
| |
Collapse
|
14
|
Zhang Z, Sang W, Xie L, Dai Y. Metal-organic frameworks for multimodal bioimaging and synergistic cancer chemotherapy. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213022] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Soltanolkottabi F, Talaie MR, Aghamiri S, Tangestaninejad S. The effect of reaction mixture movement on the performance of chromium-benzenedicarboxylate, MIL-101(Cr), applicable for CO2 adsorption through a new circulating solvothermal synthesis process. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2019. [DOI: 10.1007/s13738-019-01746-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Liu L, Qiao Z, Cui X, Pang C, Liang H, Xie P, Luo X, Huang Z, Zhang Y, Zhao Z. Amino Acid Imprinted UiO-66s for Highly Recognized Adsorption of Small Angiotensin-Converting-Enzyme-Inhibitory Peptides. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23039-23049. [PMID: 31252506 DOI: 10.1021/acsami.9b07453] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Introduction of targeted defects into microporous UiO-66s for manipulating their three-dimensional size and surface properties can endow them with adsorption and separation areas involving angiotensin-converting-enzyme-inhibitory (ACE-inhibitory) peptides. Three hydrophobic amino acids (AAs) (i.e., proline (Pro), phenylalanine (Phe), and tryptophan (Trp)) having different physical/chemical properties were applied to in situ tailor defects in UiO-66 through targeted incoordination of missing linkers or missing nodes. Characterization results revealed a uniform oval shape of the developed defects with lengths ranging from 1.8 to 3.1 nm, which was also highly consistent with our molecular simulation. Among these three defective UiO-66s, Phe and Trp imprinted UiO-66s significantly promoted the adsorption affinity of small ACE-inhibitory peptides (uptake: 1.25 mmol g-1 for DDFF and 1.37 mmol g-1 for DDWW) and ultrahigh selectivity for DDFF (249) or DDWW (279) from inactive KKKK solution based on a lock-and-key mechanism. As a result, the imprinted UiO-66 showed an enrichment capacity for ACE-inhibitory peptides about eight times higher than that of pristine UiO-66. Therefore, the amino acid imprinting strategy endorsed by its facile and discerning ability can be envisioned to be of great value for small functional peptide separation and oriented enrichment in biomedicines.
Collapse
Affiliation(s)
- Long Liu
- School of Chemistry and Chemical Engineering , Guangxi University , Nanning 530004 , China
| | - Zhiwei Qiao
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering , Guangzhou University , Guangzhou 510006 , China
| | - Xinfang Cui
- School of Chemistry and Chemical Engineering , Guangxi University , Nanning 530004 , China
| | - Chunjiao Pang
- School of Chemistry and Chemical Engineering , Guangxi University , Nanning 530004 , China
| | - Hong Liang
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering , Guangzhou University , Guangzhou 510006 , China
| | - Peng Xie
- School of Chemistry and Chemical Engineering , Guangxi University , Nanning 530004 , China
| | - Xuan Luo
- School of Chemistry and Chemical Engineering , Guangxi University , Nanning 530004 , China
| | - Zuqiang Huang
- School of Chemistry and Chemical Engineering , Guangxi University , Nanning 530004 , China
| | - Yanjuan Zhang
- School of Chemistry and Chemical Engineering , Guangxi University , Nanning 530004 , China
| | - Zhongxing Zhao
- School of Chemistry and Chemical Engineering , Guangxi University , Nanning 530004 , China
- Guangxi Key Laboratory for Electrochemical Energy Materials , Guangxi University , Nanning 530004 , China
| |
Collapse
|
17
|
Tan B, Luo Y, Liang X, Wang S, Gao X, Zhang Z, Fang Y. Mixed-Solvothermal Synthesis of MIL-101(Cr) and Its Water Adsorption/Desorption Performance. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b05243] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Bingqiong Tan
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation, The Ministry of Education, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yanshu Luo
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation, The Ministry of Education, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xianghui Liang
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation, The Ministry of Education, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shuangfeng Wang
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation, The Ministry of Education, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xuenong Gao
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation, The Ministry of Education, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhengguo Zhang
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation, The Ministry of Education, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yutang Fang
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation, The Ministry of Education, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
18
|
Li S, Wang Q, Lu J, Deng X, Bi S, Song Z, Guo C, Li R, Yan X. Precise control of the growth and size of Ni nanoparticles on Al 2O 3 by a MOF-derived strategy. CrystEngComm 2019. [DOI: 10.1039/c9ce01127g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Homogeneous and small Ni nanoparticles are generated from a MOF-derived strategy, originating from the formation of surface NiAl2O4 and the inherent confinement effect.
Collapse
Affiliation(s)
- Sha Li
- College of Chemistry and Chemical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- P. R. China
- College of Textile Engineering
| | - Qianqian Wang
- College of Chemistry and Chemical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- P. R. China
| | - Jingjun Lu
- College of Chemistry and Chemical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- P. R. China
| | - Xiaonan Deng
- College of Chemistry and Chemical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- P. R. China
| | - Shinan Bi
- College of Chemistry and Chemical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- P. R. China
| | - Zhiwen Song
- College of Chemistry and Chemical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- P. R. China
| | - Chao Guo
- College of Chemistry and Chemical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- P. R. China
| | - Ruifeng Li
- College of Chemistry and Chemical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- P. R. China
| | - Xiaoliang Yan
- College of Chemistry and Chemical Engineering
- Taiyuan University of Technology
- Taiyuan 030024
- P. R. China
| |
Collapse
|