1
|
Ding C, Lv H, Huang S, Hu M, Liao Y, Meng X, Gao M, Chen H, Feng X, Wu Z. The Application Progress of Nonthermal Plasma Technology in the Modification of Bone Implant Materials. ACS Biomater Sci Eng 2024; 10:5893-5914. [PMID: 39227180 DOI: 10.1021/acsbiomaterials.4c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
With the accelerating trend of global aging, bone damage caused by orthopedic diseases, such as osteoporosis and fractures, has become a shared international event. Traffic accidents, high-altitude falls, and other incidents are increasing daily, and the demand for bone implant treatment is also growing. Although extensive research has been conducted in the past decade to develop medical implants for bone regeneration and healing of body tissues, due to their low biocompatibility, weak bone integration ability, and high postoperative infection rates, pure titanium alloys, such as Ti-6A1-4V and Ti-6A1-7Nb, although widely used in clinical practice, have poor induction of phosphate deposition and wear resistance, and Ti-Zr alloy exhibits a lack of mechanical stability and processing complexity. In contrast, the Ti-Ni alloy exhibits toxicity and low thermal conductivity. Nonthermal plasma (NTP) has aroused widespread interest in synthesizing and modifying implanted materials. More and more researchers are using plasma to modify target catalysts such as changing the dispersion of active sites, adjusting electronic properties, enhancing metal carrier interactions, and changing their morphology. NTP provides an alternative option for catalysts in the modification processes of oxidation, reduction, etching, coating, and doping, especially for materials that cannot tolerate thermodynamic or thermosensitive reactions. This review will focus on applying NTP technology in bone implant material modification and analyze the overall performance of three common types of bone implant materials, including metals, ceramics, and polymers. The challenges faced by NTP material modification are also discussed.
Collapse
Affiliation(s)
- Chengbiao Ding
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Hao Lv
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230602, China
| | - Suoni Huang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Mengxuan Hu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Yanxinyue Liao
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Xinyue Meng
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Ming Gao
- Department of Emergency Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Hemu Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Xiaojun Feng
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Zhengwei Wu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
2
|
Shui YJ, Yao WH, Lin JH, Zhang Y, Yu Y, Wu CS, Zhang X, Tsou CH. Enhancing Polyvinyl Alcohol Nanocomposites with Carboxy-Functionalized Graphene: An In-Depth Analysis of Mechanical, Barrier, Electrical, Antibacterial, and Chemical Properties. Polymers (Basel) 2024; 16:1070. [PMID: 38674991 PMCID: PMC11054367 DOI: 10.3390/polym16081070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/30/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
To enhance the various properties of polyvinyl alcohol (PVA), varying concentrations of carboxy-functionalized graphene (CFG) were employed in the preparation of CFG/PVA nanocomposite films. FTIR and XRD analyses revealed that CFG, in contrast to graphene, not only possesses carboxylic acid group but also exhibits higher crystallinity. Mechanical testing indicated a notable superiority of CFG addition over graphene, with optimal mechanical properties such as tensile and yield strengths being achieved at a 3% CFG concentration. Relative to pure PVA, the tensile strength and yield strength of the composite increased by 2.07 and 2.01 times, respectively. XRD analysis showed distinct changes in the crystalline structure of PVA with the addition of CFG, highlighting the influence of CFG on the composite structure. FTIR and XPS analyses confirmed the formation of ester bonds between CFG and PVA, enhancing the overall performance of the material. TGA results also demonstrated that the presence of CFG enhanced the thermal stability of CFG/PVA nanocomposite films. However, analyses using scanning electron microscopy and transmission electron microscopy revealed that a 3% concentration of CFG was uniformly dispersed, whereas a 6% concentration of CFG caused aggregation of the nanofiller, leading to a decrease in performance. The incorporation of CFG significantly enhanced the water vapor and oxygen barrier properties of PVA, with the best performance observed at a 3% CFG concentration. Beyond this concentration, barrier properties were diminished owing to CFG aggregation. The study further demonstrated an increase in electrical conductivity and hydrophobicity of the nanocomposites with the addition of CFG. Antibacterial tests against E. coli showed that CFG/PVA nanocomposites exhibited excellent antibacterial properties, especially at higher CFG concentrations. These findings indicate that CFG/PVA nanocomposites, with an optimized CFG concentration, have significant potential for applications requiring enhanced mechanical strength, barrier properties, and antibacterial capabilities.
Collapse
Affiliation(s)
- Yu-Jie Shui
- Material Corrosion and Protection Key Laboratory of Sichuan Province, School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Wei-Hua Yao
- Department of Materials and Textiles, Asia Eastern University of Science and Technology, New Taipei City 220, Taiwan
| | - Jarrn-Horng Lin
- Department of Material Science, National University of Tainan, Tainan 70005, Taiwan
| | - Yingjun Zhang
- Material Corrosion and Protection Key Laboratory of Sichuan Province, School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Yongqi Yu
- Material Corrosion and Protection Key Laboratory of Sichuan Province, School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Chin-San Wu
- Department of Applied Cosmetology, Kao Yuan University, Kaohsiung 82101, Taiwan
| | - Xuemei Zhang
- Material Corrosion and Protection Key Laboratory of Sichuan Province, School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Chi-Hui Tsou
- Material Corrosion and Protection Key Laboratory of Sichuan Province, School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| |
Collapse
|
3
|
Huong QTT, Nam NTH, Hai ND, Dat NM, Linh NTT, Tinh NT, Chau NM, Phuc NVH, Le Hoai Nhi T, Phong MT, Hieu NH. Surface modification and antibacterial activity enhancement of acrylic fabric by coating silver/graphene oxide nanocomposite. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03478-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
4
|
Gao Y, Wang J, Liu X, Lang X, Niu H. Fabrication of Durable and Non-leaching Triclosan-based Antibacterial Polypropylene. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
5
|
Pillai RR, Thomas V. Plasma Surface Engineering of Natural and Sustainable Polymeric Derivatives and Their Potential Applications. Polymers (Basel) 2023; 15:400. [PMID: 36679280 PMCID: PMC9863272 DOI: 10.3390/polym15020400] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/14/2023] Open
Abstract
Recently, natural as well as synthetic polymers have been receiving significant attention as candidates to replace non-renewable materials. With the exponential developments in the world each day, the collateral damage to the environment is incessant. Increased demands for reducing pollution and energy consumption are the driving force behind the research related to surface-modified natural fibers (NFs), polymers, and various derivatives of them such as natural-fiber-reinforced polymer composites. Natural fibers have received special attention for industrial applications due to their favorable characteristics, such as low cost, abundance, light weight, and biodegradable nature. Even though NFs offer many potential applications, they still face some challenges in terms of durability, strength, and processing. Many of these have been addressed by various surface modification methodologies and compositing with polymers. Among different surface treatment strategies, low-temperature plasma (LTP) surface treatment has recently received special attention for tailoring surface properties of different materials, including NFs and synthetic polymers, without affecting any of the bulk properties of these materials. Hence, it is very important to get an overview of the latest developments in this field. The present article attempts to give an overview of different materials such as NFs, synthetic polymers, and composites. Special attention was placed on the low-temperature plasma-based surface engineering of these materials for diverse applications, which include but are not limited to environmental remediation, packaging, biomedical devices, and sensor development.
Collapse
Affiliation(s)
| | - Vinoy Thomas
- Department of Material Science and Engineering, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
6
|
Yuan L, Qu CL, Tsou CH, De Guzman MR, Huang X, Gao C, Sun YL, Yang T, Zeng C, Luo X, Tsou CY. Morphology and thermal properties of low-density polyethylene/graphite composite films as potential pH sensors prepared via heat treatment and natural drying. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03287-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
7
|
Tsou CH, Zeng R, Tsou CY, Chen JC, Sun YL, Ma ZL, De Guzman MR, Tu LJ, Tian XY, Wu CS. Mechanical, Hydrophobic, and Barrier Properties of Nanocomposites of Modified Polypropylene Reinforced with Low-Content Attapulgite. Polymers (Basel) 2022; 14:polym14173696. [PMID: 36080772 PMCID: PMC9459951 DOI: 10.3390/polym14173696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 02/06/2023] Open
Abstract
Attapulgite (ATT) has never been used as a barrier additive in polypropylene (PP). As a filler, ATT should be added in high content to PP. However, that would result in increased costs. Moreover, the compatibility between ATT and the PP matrix is poor due to the lack of functional groups in PP. In this study, carboxylic groups were introduced to PP to form a modified polypropylene (MPP). ATT was purified, and a low content of it was added to MPP to prepare MPP/ATT nanocomposites. The analysis from FTIR indicated that ATT could react with MPP. According to the results of oxygen and water permeability tests, the barrier performance of the nanocomposite was optimal when the ATT content was 0.4%. This great improvement in barrier performance might be ascribed to the following three reasons: (1) The existence of ATT extended the penetration path of O2 or H2O molecules; (2) O2 or H2O molecules may be adsorbed and stored in the porous structure of ATT; (3) Most importantly, –COOH of MPP reacted with –OH on the surface of ATT, thereby the inner structure of the nanocomposite was denser, and it was less permeable to molecules. Therefore, nanocomposites prepared by adding ATT to MPP have excellent properties and low cost. They can be used as food packaging materials and for other related applications.
Collapse
Affiliation(s)
- Chi-Hui Tsou
- School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
- Material Corrosion and Protection Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Zigong 643000, China
- Sichuan Zhixiangyi Technology Co., Ltd., Chengdu 610051, China
- Correspondence: (C.-H.T.); (C.-S.W.)
| | - Rui Zeng
- School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
- Material Corrosion and Protection Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Chih-Yuan Tsou
- Sichuan Zhixiangyi Technology Co., Ltd., Chengdu 610051, China
- Sichuan Zhirenfa Biotechnology Co., Ltd., Zigong 643000, China
| | - Jui-Chin Chen
- Department of Material and Textile, Asia Eastern University of Science and Technology, New Taipei City 220, Taiwan
| | - Ya-Li Sun
- School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Zheng-Lu Ma
- Sichuan Vocational College of Chemical Technology, Luzhou 646300, China
| | - Manuel Reyes De Guzman
- School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
- Material Corrosion and Protection Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Lian-Jie Tu
- School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
- Material Corrosion and Protection Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Xin-Yuan Tian
- Department of Material and Textile, Asia Eastern University of Science and Technology, New Taipei City 220, Taiwan
| | - Chin-San Wu
- Department of Applied Cosmetology, Kao Yuan University, Kaohsiung 82101, Taiwan
- Correspondence: (C.-H.T.); (C.-S.W.)
| |
Collapse
|
8
|
Synthesis of Polymer Nanospheres Conjugated Ce (IV) Complexes for Constructing Double Antibacterial Centers. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02165-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Shin H, Kim S, Kim J, Kong S, Lee Y, Lee J. Preparation of 3‐pentadecylphenol‐modified cellulose nanocrystal and its application as a filler to polypropylene nanocomposites having improved antibacterial and mechanical properties. J Appl Polym Sci 2021. [DOI: 10.1002/app.51848] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Huiseob Shin
- School of Chemical and Biological Engineering, and Institute of Chemical Processes Seoul National University Seoul Republic of Korea
| | - Sangwan Kim
- School of Chemical and Biological Engineering, and Institute of Chemical Processes Seoul National University Seoul Republic of Korea
| | - Jinseok Kim
- School of Chemical and Biological Engineering, and Institute of Chemical Processes Seoul National University Seoul Republic of Korea
| | - Saerom Kong
- School of Chemical and Biological Engineering, and Institute of Chemical Processes Seoul National University Seoul Republic of Korea
| | - Yonghoon Lee
- Chemical Pilot Bldg. S‐OIL TS&D Center Seoul Republic of Korea
| | - Jong‐Chan Lee
- School of Chemical and Biological Engineering, and Institute of Chemical Processes Seoul National University Seoul Republic of Korea
| |
Collapse
|
10
|
Ge FF, Tsou CH, Yuan S, De Guzman MR, Zeng CY, Li J, Jia CF, Cheng BY, Yang PC, Gao C. Barrier performance and biodegradability of antibacterial poly(butylene adipate-co-terephthalate) nanocomposites reinforced with a new MWCNT-ZnO nanomaterial. NANOTECHNOLOGY 2021; 32:485706. [PMID: 34359060 DOI: 10.1088/1361-6528/ac1b52] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
A new nanomaterial or nano-filler in the form of multiwalled carbon nanotube-zinc oxide (MWCNT-ZnO) was synthesized for the purpose of modifying poly(butylene adipate-co-terephthalate) (PBAT) and its derivative (modified PBAT or MPBAT) through a melt-blending method (MPBAT was obtained by introducing maleic anhydride groups into PBAT). The effect of the new nano-filler on the properties of resultant nanocomposites was determined from the characterization of mechanical properties, morphology, crystallinity, thermal stability, barrier properties, hydrophilicity, conductivity, antibacterial property, and biodegradability. The results showed that MPBAT nanocomposites had stronger mechanical properties, better barrier properties, and higher electrical conductivity than PBAT nanocomposites. Scanning electron microscopy illustrated that MWCNT-ZnO had better compatibility with MPBAT than with PBAT. At 0.2% MWCNT-ZnO, the MPBAT/MWCNT-ZnO nanocomposite film exhibited the greatest mechanical properties (17.74% increase in tensile strength, 22.17% in yield strength, and 14.29% in elongation at break). When the MWCNT-ZnO content was 0.4%, the nanocomposite film demonstrated the best water vapor barrier ability (an increase of 30.4%). The MPBAT/MWCNT-ZnO film with 0.6% MWCNT-ZnO turned out to have the best oxygen barrier performance (an increase of 130% relative to pure PBAT). It was shown from the results of antibacterial evaluation that the new nanomaterial could impart PBAT and MPBAT with antibacterial activity. The biodegradability tests indicated that an MWCNT-ZnO content of 0.2% could slightly reduce the biodegradability, and when the content was higher than 0.2%, the weight loss rate would increase.
Collapse
Affiliation(s)
- Fei-Fan Ge
- Material Corrosion and Protection Key Laboratory of Sichuan Province, School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, People's Republic of China
| | - Chi-Hui Tsou
- Material Corrosion and Protection Key Laboratory of Sichuan Province, School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, People's Republic of China
- Department of Materials and Textiles, Oriental Institute of Technology, Pan-Chiao 22064, Taiwan, Republic of China
- Department of Applied Cosmetology, Kao Yuan University, Kaohsiung County 82101, Taiwan, Republic of China
- Sichuan Golden-Elephant Sincerity Chemical Co. Ltd, Meishan 620010, People's Republic of China
- Sichuan Yibin Plastic Packaging Materials Co. Ltd, Yibin 644007, People's Republic of China
- Sichuan Zhixiangyi Technology Co. Ltd, Chengdu 610051, People's Republic of China
- Sichuan Zhirenfa Environmental Protection Technology Co. Ltd, Zigong 643000, People's Republic of China
- Center of Excellence in Textiles, Department of Materials Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Shuai Yuan
- Material Corrosion and Protection Key Laboratory of Sichuan Province, School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, People's Republic of China
| | - Manuel Reyes De Guzman
- Material Corrosion and Protection Key Laboratory of Sichuan Province, School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, People's Republic of China
| | - Chun-Yan Zeng
- Material Corrosion and Protection Key Laboratory of Sichuan Province, School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, People's Republic of China
| | - Jun Li
- Chengdu Haiguang Nuclear Power Technology Service Co. Ltd, Chengdu 610051, People's Republic of China
| | - Chun-Fen Jia
- Material Corrosion and Protection Key Laboratory of Sichuan Province, School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, People's Republic of China
| | - Bin-Yi Cheng
- Material Corrosion and Protection Key Laboratory of Sichuan Province, School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, People's Republic of China
| | - Peng-Cheng Yang
- Material Corrosion and Protection Key Laboratory of Sichuan Province, School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, People's Republic of China
| | - Chen Gao
- Material Corrosion and Protection Key Laboratory of Sichuan Province, School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, People's Republic of China
| |
Collapse
|
11
|
Marques IR, Silveira C, Leite MJL, Piacentini AM, Binder C, Dotto MER, Ambrosi A, Di Luccio M, Costa C. Simple approach for the plasma treatment of polymeric membranes and investigation of the aging effect. J Appl Polym Sci 2021. [DOI: 10.1002/app.50558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ingrid R. Marques
- Centro Tecnológico, Departamento de Engenharia Química e Engenharia de Alimentos Universidade Federal de Santa Catarina Florianópolis Brazil
| | - Camila Silveira
- Centro Tecnológico, Departamento de Engenharia Química e Engenharia de Alimentos Universidade Federal de Santa Catarina Florianópolis Brazil
| | - Monique J. L. Leite
- Centro Tecnológico, Departamento de Engenharia Química e Engenharia de Alimentos Universidade Federal de Santa Catarina Florianópolis Brazil
| | - Artur M. Piacentini
- Centro Tecnológico, Departamento de Engenharia Elétrica Universidade Federal de Santa Catarina Florianópolis Brazil
| | - Cristiano Binder
- Centro Tecnológico, Departamento de Engenharia Mecânica Universidade Federal de Santa Catarina Florianópolis Brazil
| | - Marta E. R. Dotto
- Centro de Ciências Físicas e Matemáticas, Departamento de Física Universidade Federal de Santa Catarina Florianópolis Brazil
| | - Alan Ambrosi
- Centro Tecnológico, Departamento de Engenharia Química e Engenharia de Alimentos Universidade Federal de Santa Catarina Florianópolis Brazil
| | - Marco Di Luccio
- Centro Tecnológico, Departamento de Engenharia Química e Engenharia de Alimentos Universidade Federal de Santa Catarina Florianópolis Brazil
| | - Cristiane Costa
- Centro Tecnológico, Departamento de Engenharia Química e Engenharia de Alimentos Universidade Federal de Santa Catarina Florianópolis Brazil
| |
Collapse
|
12
|
Kiel S, Klein M, Kroupitski Y, Peiper UM, Sela Saldinger S, Poverenov E. Air-ozonolysis activation of polyolefins versus use of laden finishing to form contact-active nonwoven materials. Sci Rep 2021; 11:10798. [PMID: 34031478 PMCID: PMC8144365 DOI: 10.1038/s41598-021-90218-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 05/07/2021] [Indexed: 11/08/2022] Open
Abstract
Two synthetic approaches were explored for modification of the polyolefins polyethylene/polypropylene (PE/PP) to form contact-active nonwoven materials. In the first approach, polymer surfaces were activated by O2-free air-ozonolysis, and then the active agent (trimethoxysilyl) propyl-octadecyl-dimethyl-ammonium chloride (C18-TSA) was covalently bound. In the second approach, the active agent was directly conjugated to the commercial 'finishing' that was then applied to the polymer. The chemical, physical and microscopic properties of the modified polymers were comprehensively studied, and their active site density was quantified by fluorescein sodium salt-cetyltrimethylammonium chloride reaction. The antimicrobial activity of the prepared nonwovens against Bacillus subtilis (Gram-positive) and Salmonella enterica (Gram-negative), and their stability at various pHs and temperatures were examined. The two approaches conferred antimicrobial properties to the modified polymers and demonstrated stable linkage of C18-TSA. However, the performance of the nonwovens formed by the first approach was superior. The study suggests two feasible and safe pathways for the modification of polyolefins to form contact-active nonwoven materials that can be further applied in various fields, such as hygiene products, medical fabrics, sanitizing wipes, and more.
Collapse
Affiliation(s)
- Stella Kiel
- Department of Food Science, Agro-Nanotechnology and Advanced Materials Research Center, Agricultural Research Organization, The Volcani Center, 7505101, Rishon Lezion, Israel
| | - Miri Klein
- Department of Food Science, Agro-Nanotechnology and Advanced Materials Research Center, Agricultural Research Organization, The Volcani Center, 7505101, Rishon Lezion, Israel
| | - Yulia Kroupitski
- Department of Food Science, Agro-Nanotechnology and Advanced Materials Research Center, Agricultural Research Organization, The Volcani Center, 7505101, Rishon Lezion, Israel
| | - Uri M Peiper
- Department of Agricultural Engineering, Agricultural Research Organization, The Volcani Center, 7505101, Rishon Lezion, Israel
| | - Shlomo Sela Saldinger
- Department of Food Science, Agro-Nanotechnology and Advanced Materials Research Center, Agricultural Research Organization, The Volcani Center, 7505101, Rishon Lezion, Israel
| | - Elena Poverenov
- Department of Food Science, Agro-Nanotechnology and Advanced Materials Research Center, Agricultural Research Organization, The Volcani Center, 7505101, Rishon Lezion, Israel.
| |
Collapse
|
13
|
Antibacterial nanocomposite films of poly(vinyl alcohol) modified with zinc oxide-doped multiwalled carbon nanotubes as food packaging. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03666-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Chi-Hui Tsou, Guo J, Lei JA, De Guzman MR, Suen MC. Characterizing Attapulgite-Reinforced Nanocomposites of Poly(lactic acid). POLYMER SCIENCE SERIES A 2020. [DOI: 10.1134/s0965545x20330068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Tsou CH, Zhao L, Gao C, Duan H, Lin X, Wen Y, Du J, Lin SM, Suen MC, Yu Y, Liu X, De Guzman MR. Characterization of network bonding created by intercalated functionalized graphene and polyvinyl alcohol in nanocomposite films for reinforced mechanical properties and barrier performance. NANOTECHNOLOGY 2020; 31:385703. [PMID: 32464605 DOI: 10.1088/1361-6528/ab9786] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Graphene that consists of less than 10 layers is expensive; moreover, it tends to agglomerate. These disadvantages restrict its utility. In this regard, the present study aimed to reduce the number of layers of a functionalized graphene (FG) with 10-30 layers to less than 10 layers by using an ultrasonic processor. We prepared nanocomposite films of polyvinyl alcohol (PVA) incorporated with FG by a simple hydrothermal method and ultrasonic dispersion. Oxygen transmission rate and water vapor permeability were considerably increased on account of modifying PVA with FG. Furthermore, the mechanical properties, thermostability, and barrier properties were improved. The barrier efficiency of the nanocomposites at different temperatures remained high for long periods of operation because of the network bonding. A simple procedure involving relatively low-cost nanomaterials could unlock the potential of nanocomposite FG/PVA films in the fields of coating, packaging, and semiconductor materials.
Collapse
Affiliation(s)
- Chi-Hui Tsou
- Material Corrosion and Protection Key Laboratory of Sichuan Province, School of Materials Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, People's Republic of China. Sichuan Yibin Plastic Packaging Materials Co., Ltd, Yibin 644007, People's Republic of China. Sichuan Golden-Elephant Sincerity Chemical Co., Ltd, Meishan 620010, People's Republic of China. Sichuan Zhixiangyi Technology Co., Ltd, Chengdu 610051, People's Republic of China. Sichuan Zhirenfa Environmental Protection Technology Co., Ltd, Zigong 643000, People's Republic of China. Department of Materials Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Evaluating distillers grains as bio-fillers for high-density polyethylene. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02148-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Infusing High-density Polyethylene with Graphene-Zinc Oxide to Produce Antibacterial Nanocomposites with Improved Properties. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2392-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
18
|
Design and preparation of polypropylene ultrafiltration membrane with ultrahigh flux for both water and oil. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
|
20
|
Guo M, Meng F, Li G, Luo J, Ma Y, Xia X. Effective Antibacterial Glass Fiber Membrane Prepared by Plasma-Enhanced Chemical Grafting. ACS OMEGA 2019; 4:16591-16596. [PMID: 31616840 PMCID: PMC6788041 DOI: 10.1021/acsomega.9b02403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/10/2019] [Indexed: 05/02/2023]
Abstract
This paper reports a novel glass fiber membrane with an effective antibacterial performance by chemical grafting of quaternary ammonium salt (QAS) which is enhanced by a plasma bombardment technique. Plasma bombardment as a pretreatment of the membrane can increase the QAS anchored on the membrane from 0.8 to 1.3 wt %. The chemical grafting technique can increase the membrane zeta potential from negative values to positive values in aqueous solutions at various pHs. Furthermore, the plasma-enhanced chemical-grafting membrane has more positive zeta potentials (49.0 mV at pH = 7) than the chemical-grafting membrane without the plasma bombardment technique (38.9 mV at pH = 7). In the antibacterial performance evaluation, the Escherichia coli survival rate decreased from 127.0% of the pristine membrane to 4.1 and 11.3% of the plasma-enhanced chemical-grafting membrane and the chemical-grafting membrane, respectively. In addition, the plasma-enhanced chemical-grafting membrane shows durable antibacterial activity against E. coli with copious water rinsing as much as 3 L·cm-2.
Collapse
Affiliation(s)
| | | | - Guoping Li
- Shenzhen Angel Drinking Water Industrial
Group Corporation, Angel
Industrial Park, Baoan District, Shenzhen, Guangdong 518108, China
| | - Jiyue Luo
- Shenzhen Angel Drinking Water Industrial
Group Corporation, Angel
Industrial Park, Baoan District, Shenzhen, Guangdong 518108, China
| | - Yiwen Ma
- Shenzhen Angel Drinking Water Industrial
Group Corporation, Angel
Industrial Park, Baoan District, Shenzhen, Guangdong 518108, China
| | - Xue Xia
- Shenzhen Angel Drinking Water Industrial
Group Corporation, Angel
Industrial Park, Baoan District, Shenzhen, Guangdong 518108, China
| |
Collapse
|
21
|
Preparation and characterization of renewable composites from
Polylactide and Rice husk for 3D printing applications. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1882-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Fabrication, characterization, and application of biocomposites from poly(lactic acid) with renewable rice husk as reinforcement. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1710-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
23
|
|