1
|
Wu YG, Li XZ, Zhao J, Yang X, Cai YJ, Jiang H, Sun YX, Wei NJ, Liu Y, Li YB, Yang ZH, Jiang MY, Gai JG. Biomimetic redox-responsive smart coatings with resistance-release functions for reverse osmosis membranes. J Mater Chem B 2023; 11:7950-7960. [PMID: 37491975 DOI: 10.1039/d3tb00904a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Membrane fouling induces catastrophic loss of separation performance and seriously restricts the applications of reverse osmosis (RO) membranes. Inspired by the mussel structure, polydopamine (PDA) and cystamine molecules (CA) with excellent anti-fouling properties were used to prepare accessible, biocompatible, and redox-responsive coatings for RO membranes. The PDA/CA-coated RO membranes exhibit a superior water flux of 65 L m-2 h-1 with a favourable NaCl rejection exceeding 99%. The water permeability through the PDA/CA-coated membrane is much higher than that of most membranes with similar rejection rates. Due to the formed protective hydration layers by PDA/CA coatings, anti-fouling properties against proteins, polysaccharides and surfactants were evaluated separately, and ultralow fouling properties were demonstrated. Moreover, the disulfide linkages in CA molecules can cleave in a reducing environment, yielding the degradation of PDA/CA coatings, thereby removing the foulants deposited on the coatings. The degradation endows the coated membranes with satisfying longtime anti-fouling properties, where the flux recovery reaches up to 90%. The construction of redox-responsive smart coatings not only provided a promising route to alleviate membrane fouling but can also be upscaled for use in numerous practical applications like sensors, medical devices, and drug delivery.
Collapse
Affiliation(s)
- Ya-Ge Wu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, Sichuan 610065, China.
| | - Xin-Zheng Li
- Nuclear Power Institute of China, 328, Section 1, Changshun Avenue, Huayang, Shuangliu District, Chengdu City, Sichuan Province, 610200, China
| | - Jing Zhao
- PetroChina Liaoyang Petrochemical Company, No. 7 Torch Street, Hongwei District, Liaoyang, Liaoning 111000, China
| | - Xu Yang
- PetroChina Liaoyang Petrochemical Company, No. 7 Torch Street, Hongwei District, Liaoyang, Liaoning 111000, China
| | - Ya-Juan Cai
- Sichuan Guojian Inspection Co., Ltd, No. 17, Section 1, Kangcheng Road, Jiangyang District, Luzhou 646099, Sichuan, China
| | - Han Jiang
- Nuclear Power Institute of China, 328, Section 1, Changshun Avenue, Huayang, Shuangliu District, Chengdu City, Sichuan Province, 610200, China
| | - Yi-Xing Sun
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, Sichuan 610065, China.
| | - Nan-Jun Wei
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yang Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yi-Bo Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, Sichuan 610065, China.
| | - Zi-Hao Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, Sichuan 610065, China.
| | - Meng-Ying Jiang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, Sichuan 610065, China.
| | - Jing-Gang Gai
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, Sichuan 610065, China.
| |
Collapse
|
2
|
Gao J, Liu J, Liu L, Dong J, Zhao X, Pan J. Multiple Interface Reactions Enabled Zwitterionic Polyamide Composite Reverse Osmosis Membrane for Enhanced Permeability and Antifouling Property. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jing Gao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, People’s Republic of China
| | - Jialin Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, People’s Republic of China
| | - Lingling Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, People’s Republic of China
| | - Jiajing Dong
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, People’s Republic of China
| | - Xueting Zhao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, People’s Republic of China
| | - Jiefeng Pan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou310014, People’s Republic of China
| |
Collapse
|
3
|
Chen Q, Yao Y, Liao J, Li J, Xu J, Wang T, Tang Y, Xu Y, Ruan H, Shen J. Subnanometer Ion Channel Anion Exchange Membranes Having a Rigid Benzimidazole Structure for Selective Anion Separation. ACS NANO 2022; 16:4629-4641. [PMID: 35226457 DOI: 10.1021/acsnano.1c11264] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ion-conductive polymers having a well-defined phase-separated structure show the potential application of separating mono- and bivalent ion separation. In this work, three side-chain-type poly(arylene ether sulfone)-based anion exchange membranes (AEMs) have been fabricated to investigate the effect of the stiffness of the polymer backbone within AEMs on the Cl-/NO3- and Cl-/SO42- separation performance. Our investigations via small-angle X-ray scattering (SAXS), positron annihilation, and differential scanning calorimetry (DSC) demonstrate that the as-prepared AEM with a rigid benzimidazole structure in the backbone bears subnanometer ion channels resulting from the arrangement of the rigid polymer backbone. In particular, SAXS results demonstrate that the rigid benzimidazole-containing AEM in the wet state has an ion cluster size of 0.548 nm, which is smaller than that of an AEM with alkyl segments in the backbone (0.760 nm). Thus, in the electrodialysis (ED) process, the former exhibits a superior capacity of separating Cl-/SO42- ions relative to latter. Nevertheless, the benzimidazole-containing AEM shows an inability to separate the Cl-/NO3- ions, which is possibly due to the similar ion size of the two. The higher rotational energy barrier (4.3 × 10-3 Hartree) of benzimidazole units and the smaller polymer matrix free-volume (0.636%) in the AEM significantly contribute to the construction of smaller ion channels. As a result, it is believed that the rigid benzimidazole structure of this kind is a benefit to the construction of stable subnanometer ion channels in the AEM that can selectively separate ions with different sizes.
Collapse
Affiliation(s)
- Quan Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuyang Yao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Junbin Liao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Junhua Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jingwen Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tongtong Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuanyuan Tang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yanqing Xu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Huimin Ruan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
4
|
Development of PSQ-RO membranes with high water permeability by copolymerization of bis[3-(triethoxysilyl)propyl]amine and triethoxy(3-glycidyloxypropyl)silane. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
5
|
Nanocomposite cation-exchange membranes for wastewater electrodialysis: organic fouling, desalination performance, and toxicity testing. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119217] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Liu W, Lin H, Wang J, Han Q, Liu F. Polytetrafluoroethylene (PTFE) hollow fibers modified by hydrophilic crosslinking network (HCN) for robust resistance to fouling and harsh chemical cleaning. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119301] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Jeon S, Park CH, Shin SS, Lee JH. Fabrication and structural tailoring of reverse osmosis membranes using β-cyclodextrin-cored star polymers. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118415] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Xu R, Ding L, Chen D, Liu T, Wu Y, Cao Y, Chen J, Yang F, Kang J, Xiang M. Enhancing the Chlorine Stability and Antifouling Properties of Thin-Film Composite Reverse Osmosis Membranes via Surface Grafting L-Arginine-Functionalized Polyvinyl Alcohol. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00904] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ruizhang Xu
- Polymer Research Institute of Sichuan University, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Lei Ding
- Polymer Research Institute of Sichuan University, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Dandan Chen
- Polymer Research Institute of Sichuan University, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Tianyu Liu
- Polymer Research Institute of Sichuan University, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yunqi Wu
- Polymer Research Institute of Sichuan University, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Ya Cao
- Polymer Research Institute of Sichuan University, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jinyao Chen
- Polymer Research Institute of Sichuan University, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Feng Yang
- Polymer Research Institute of Sichuan University, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jian Kang
- Polymer Research Institute of Sichuan University, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Ming Xiang
- Polymer Research Institute of Sichuan University, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
9
|
Wang C, Feng Y, Chen J, Bai X, Ren L, Wang C, Huang K, Wu H. Nanofiltration membrane based on graphene oxide crosslinked with zwitterion-functionalized polydopamine for improved performances. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Ma G, Xu X, Tesfai M, Wang H, Xu P. Developing anti-biofouling and energy-efficient cation-exchange membranes using conductive polymers and nanomaterials. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Xia Y, Dai X, Gai J. Preparation of high‐performance reverse osmosis membrane by zwitterionic polymer coating in a facile one‐step way. J Appl Polym Sci 2019. [DOI: 10.1002/app.48355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yu Xia
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan University Chengdu Sichuan 610065 China
| | - Xiaojun Dai
- Institute of Chemical MaterialsChina Academy of Engineering Physics Mianyang 621900 People's Republic of China
| | - Jing‐Gang Gai
- State Key Laboratory of Polymer Materials EngineeringPolymer Research Institute of Sichuan University Chengdu Sichuan 610065 China
| |
Collapse
|