1
|
Qiao Z, Dong X, Yang T, Hu L, Yin T. Carbon paper anodes decorated with TiO 2 nanowires and Au nanoparticles for facilitating bacterial extracellular electron transfer. Bioprocess Biosyst Eng 2025; 48:761-769. [PMID: 40064688 DOI: 10.1007/s00449-025-03141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 02/25/2025] [Indexed: 04/05/2025]
Abstract
Au nanoparticles-composite TiO2 nanowires (NWs) modified carbon paper (CP) anode was synthesized via the hydrothermal method. Field emission scanning electron microscopy (FESEM) images demonstrate that the modified nanocomposite electrode features a rough and bumpy surface structure. The electrochemical activities of TiO2-Au/CP and the control electrodes (TiO2-NWs/CP, Au/CP, CP) for microbial fuel cell (MFC) are investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). When using TiO2-Au/CP as a bioanode, the maximum power output density of Shewanella loihica PV-4 inoculated MFC increases by 49.7%, 26.5% and 190.6% compared with that when using TiO2-NWs/CP, Au/CP and bare CP as bioanodes, respectively. CV analysis indicates that TiO2-Au mediates direct and indirect electron transfer between the electrode and the bacteria, as evidenced by the appearance of redox peaks with mid-point potentials Em of - 0.305 V and -0.465 V, respectively. The generation of bioelectricity reveals the formation of a biofilm on the electrode surface. Furthermore, compared with the control electrodes, the MFC assembled with a TiO2-Au anode exhibits a smaller semicircle in the high-frequency region, representing a lower charge transfer resistance (Rct). The improvement in MFC performance can be attributed to the fact that the combination of TiO2 and Au enhances the conductivity and electrochemical activity of the electrode, along with its good biocompatibility and large specific surface area, which are favorable for bacterial colonization. Thus, TiO2-Au/CP serves as an ideal anode material featuring simple synthesis. Additionally, its surface modifier, TiO2-Au can be extended for the modification of other base electrodes, enabling the acquisition of high-quality anodes for MFCs.
Collapse
Affiliation(s)
- Zhixing Qiao
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Xiaoyu Dong
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Tong Yang
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Lichen Hu
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
- School of Forensic Medicine, Shanxi Medical University, Taiyuan, 030001, People's Republic of China
| | - Tao Yin
- College of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, People's Republic of China.
| |
Collapse
|
2
|
Kuznetsova LS, Arlyapov VA, Plekhanova YV, Tarasov SE, Kharkova AS, Saverina EA, Reshetilov AN. Conductive Polymers and Their Nanocomposites: Application Features in Biosensors and Biofuel Cells. Polymers (Basel) 2023; 15:3783. [PMID: 37765637 PMCID: PMC10536614 DOI: 10.3390/polym15183783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Conductive polymers and their composites are excellent materials for coupling biological materials and electrodes in bioelectrochemical systems. It is assumed that their relevance and introduction to the field of bioelectrochemical devices will only grow due to their tunable conductivity, easy modification, and biocompatibility. This review analyzes the main trends and trends in the development of the methodology for the application of conductive polymers and their use in biosensors and biofuel elements, as well as describes their future prospects. Approaches to the synthesis of such materials and the peculiarities of obtaining their nanocomposites are presented. Special emphasis is placed on the features of the interfaces of such materials with biological objects.
Collapse
Affiliation(s)
- Lyubov S. Kuznetsova
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia
| | - Vyacheslav A. Arlyapov
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia
| | - Yulia V. Plekhanova
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Sergei E. Tarasov
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Anna S. Kharkova
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia
| | - Evgeniya A. Saverina
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, 300012 Tula, Russia
- Federal State Budgetary Institution of Science, N.D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Russia
| | - Anatoly N. Reshetilov
- Federal Research Center «Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences», G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|
3
|
Jaswal V, J RB, N YK. Synergistic effect of TiO 2 nanostructured cathode in microbial fuel cell for bioelectricity enhancement. CHEMOSPHERE 2023; 330:138556. [PMID: 37003439 DOI: 10.1016/j.chemosphere.2023.138556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/19/2023] [Accepted: 03/29/2023] [Indexed: 05/14/2023]
Abstract
Nano-bedecking of electrode with nanoparticles is an effective method to improve power generation of microbial fuel cells (MFCs). In this study, different concentrations (0.25 mg cm-2, 0.50 mg cm-2, 0.75 mg cm-2 and 1.0 mg cm-2) of TiO2 nanoparticles of size 10-25 nm were overlaid on the carbon cloth (CC) using spray pyrolysis technique and used as catalytic cathode in a dual-chambered microbial fuel cell treating distillery wastewater. Results evidenced that TiO2 nanoparticles modified cathode increased the power generation and recorded a highest power and current density of 162.5 ± 2 mW m-2 and 1.4 ± 0.005 A m-2, respectively. Carbon cloth coated with 0.50 mg cm-2 TiO2 nanoparticles showed 2.8 and 7.3 times higher current and power density as compared to uncoated cathode. MFC operated at a hydraulic retention time (HRT) and organic loading rate (OLR) of 72 h and 59.2 g COD L-1 d-1 showed a maximum chemical oxygen demand (COD) removal of 72.3% which was 15.3% higher than the control MFC. Likewise, the coulombic efficiency of control and modified MFC was 33% and 44%, respectively. The maximum NO3-- N, NO2-- N and NH4+- N removal efficiency of 77.3%, 49.9% and 59.4% were observed for TiO2 nanoparticles modified electrode which was 19.3%, 11.4% and 10.5% higher than control. TiO2 modified cathode was effective in enhancing the bioelectricity generation in MFCs.
Collapse
Affiliation(s)
- Vijay Jaswal
- Department of Environmental Science and Technology, Central University of Punjab, Bathinda, Punjab, 151401, India
| | - Rajesh Banu J
- Department of Biotechnology, Central University of Tamil Nadu, Tiruvarur, 610005, Tamil Nadu, India
| | - Yogalakshmi K N
- Department of Environmental Science and Technology, Central University of Punjab, Bathinda, Punjab, 151401, India.
| |
Collapse
|
4
|
Jaswal V, Kadapakkam Nandabalan Y. Rice husk-derived silicon nanostructured anode to enhance power generation in microbial fuel cell treating distillery wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116912. [PMID: 36529004 DOI: 10.1016/j.jenvman.2022.116912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
The present study aims to utilize rice husk as a source of silica to prepare rice husk derived silicon nanoparticles (RH-Si) and demonstrate its ability as an anode modifier in a two-chambered H-shaped microbial fuel cell (MFC). The silicon nanoparticles synthesized by magnesiothermal reduction process were spherical in shape and ranged in size from 15 to 60 nm. The anode modified with silicon nanoparticles of 0.50 mg cm-2 recorded the maximum power and current density of 190.5 mW m-2 and 1.5 A m-2 corresponding to 7.6-fold and 3-fold increase as compared to the control . The modified anode also recorded a COD removal and coulombic efficiency of 74% and 49%, respectively in MFC operated with combined distillery and domestic wastewater at a HRT and OLR of 72 h and 59.2 gCOD L-1 d-1, respectively. The results evidence that RH derived silicon NPs are good anode modifiers and effective in enhancing bioelectricity generation and COD removal in MFCs.
Collapse
Affiliation(s)
- Vijay Jaswal
- Department of Environmental Science and Technology, Central University of Punjab, Bathinda, Punjab, 151401, India
| | | |
Collapse
|
5
|
Thakre KG, Barai DP, Bhanvase BA. A review of graphene-TiO 2 and graphene-ZnO nanocomposite photocatalysts for wastewater treatment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2414-2460. [PMID: 34378264 DOI: 10.1002/wer.1623] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Technologies for wastewater remediation have been growing ever since the environmental and health concern is realized. Development of nanomaterials has enabled mankind to have different methods to treat the various kinds of inorganic and organic pollutants present in wastewater from many resources. Among the many materials, semiconductor materials have found many environmental applications due to their outstanding photocatalytic activities. TiO2 and ZnO are more effectively used as photocatalyst or adsorbents in the withdrawal of inorganic as well as organic wastes from the wastewater. On the other hand, graphene is tremendously being investigated for applications in environmental remediation in view of the superior physical, optical, thermal, and electronic properties of graphene nanocomposites. In this work, graphene-TiO2 and graphene-ZnO nanocomposites have been reviewed for photocatalytic wastewater treatment. The various preparation techniques of these nanocomposites have been discussed. Also, different design strategies for graphene-based photocatalyst have been revealed. These nanocomposites exhibit promising applications in most of the water purification processes which are reviewed in this work. Along with this, the development of these nanocomposites using biomass-derived graphene has also been introduced. PRACTITIONER POINTS: Graphene-TiO2 and graphene-ZnO nanocomposites are effective for wastewater treatment through photocatalysis. These nanocomposite photocatalysts have been used in the form of membrane as well as antibacterial agents. Synthetic strategies and design considerations of graphene-based photocatalyst play a major role. Biomass-derived graphene-TiO2 and graphene-ZnO nanocomposites have also found application in wastewater treatment.
Collapse
Affiliation(s)
- Kunal G Thakre
- Department of Chemical Engineering, Laxminarayan Institute of Technology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Divya P Barai
- Department of Chemical Engineering, Laxminarayan Institute of Technology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| | - Bharat A Bhanvase
- Department of Chemical Engineering, Laxminarayan Institute of Technology, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, India
| |
Collapse
|
6
|
McCuskey SR, Chatsirisupachai J, Zeglio E, Parlak O, Panoy P, Herland A, Bazan GC, Nguyen TQ. Current Progress of Interfacing Organic Semiconducting Materials with Bacteria. Chem Rev 2021; 122:4791-4825. [PMID: 34714064 DOI: 10.1021/acs.chemrev.1c00487] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microbial bioelectronics require interfacing microorganisms with electrodes. The resulting abiotic/biotic platforms provide the basis of a range of technologies, including energy conversion and diagnostic assays. Organic semiconductors (OSCs) provide a unique strategy to modulate the interfaces between microbial systems and external electrodes, thereby improving the performance of these incipient technologies. In this review, we explore recent progress in the field on how OSCs, and related materials capable of charge transport, are being used within the context of microbial systems, and more specifically bacteria. We begin by examining the electrochemical communication modes in bacteria and the biological basis for charge transport. Different types of synthetic organic materials that have been designed and synthesized for interfacing and interrogating bacteria are discussed next, followed by the most commonly used characterization techniques for evaluating transport in microbial, synthetic, and hybrid systems. A range of applications is subsequently examined, including biological sensors and energy conversion systems. The review concludes by summarizing what has been accomplished so far and suggests future design approaches for OSC bioelectronics materials and technologies that hybridize characteristic properties of microbial and OSC systems.
Collapse
Affiliation(s)
- Samantha R McCuskey
- Department of Chemistry, National University of Singapore, Singapore 119077, Singapore
| | - Jirat Chatsirisupachai
- Center for Polymers and Organic Solids & Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States.,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| | - Erica Zeglio
- Division of Micro and Nanosystems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm 17177, Sweden
| | - Onur Parlak
- Dermatology and Venereology Division, Department of Medicine(Solna), Karolinska Institute, Stockholm 17177, Sweden.,AIMES Center of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden
| | - Patchareepond Panoy
- Center for Polymers and Organic Solids & Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States.,Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan, Rayong 21210, Thailand
| | - Anna Herland
- Division of Micro and Nanosystems, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm 17177, Sweden.,AIMES Center of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden
| | - Guillermo C Bazan
- Department of Chemistry, National University of Singapore, Singapore 119077, Singapore
| | - Thuc-Quyen Nguyen
- Center for Polymers and Organic Solids & Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
7
|
TiO2-Graphene Quantum Dots Nanocomposites for Photocatalysis in Energy and Biomedical Applications. Catalysts 2021. [DOI: 10.3390/catal11030319] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The focus of current research in material science has shifted from “less efficient” single-component nanomaterials to the superior-performance, next-generation, multifunctional nanocomposites. TiO2 is a widely used benchmark photocatalyst with unique physicochemical properties. However, the large bandgap and massive recombination of photogenerated charge carriers limit its overall photocatalytic efficiency. When TiO2 nanoparticles are modified with graphene quantum dots (GQDs), some significant improvements can be achieved in terms of (i) broadening the light absorption wavelengths, (ii) design of active reaction sites, and (iii) control of the electron-hole (e−-h+) recombination. Accordingly, TiO2-GQDs nanocomposites exhibit promising multifunctionalities in a wide range of fields including, but not limited to, energy, biomedical aids, electronics, and flexible wearable sensors. This review presents some important aspects of TiO2-GQDs nanocomposites as photocatalysts in energy and biomedical applications. These include: (1) structural formulations and synthesis methods of TiO2-GQDs nanocomposites; (2) discourse about the mechanism behind the overall higher photoactivities of these nanocomposites; (3) various characterization techniques which can be used to judge the photocatalytic performance of these nanocomposites, and (4) the application of these nanocomposites in biomedical and energy conversion devices. Although some objectives have been achieved, new challenges still exist and hinder the widespread application of these nanocomposites. These challenges are briefly discussed in the Future Scope section of this review.
Collapse
|
8
|
Performance evaluation of poly(aniline-co-pyrrole) wrapped titanium dioxide nanocomposite as an air-cathode catalyst material for microbial fuel cell. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111492. [PMID: 33255059 DOI: 10.1016/j.msec.2020.111492] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 11/23/2022]
Abstract
A simple, inexpensive in situ oxidative polymerization of aniline and pyrrole using ammonium persulfate (APS) as oxidant and hydrochloric acid (HCl) as dopant has been used to synthesize a hybrid (PAni-Co-PPy)@TiO2 nanocomposite with titanium oxide (TiO2) nanoparticles (NPs) wrapped into (PAni-Co-PPy) copolymer. The synthesized nanocomposite has been shown with higher oxygen reduction reactions (ORR) as an excellent cathode material for higher performance in the complex of (PAni-Co-PPy)+/TiO2(O-). The charge transport phenomenon between TiO2 and (PAni-Co-PPy)+ were found adequate with subsequent delocalization of electron/s at PAni and PPy. The self-doping nature of TiO2 (O-) played a vital role in oxygen adsorption and desorption process. With higher electrical conductivity and surface area, these were tested in microbial fuel cells (MFCs) for ORRs at cathode. This yielded a relatively higher current and power density output as compared to PAni@TiO2, PPy@TiO2, and commercially available Pt/C cathode catalysts in MFC system. In overall, the prepared (PAni-Co-PPy)@TiO2 nano-hybrid cathode delivered ~2.03 fold higher power density as compared to Pt/C catalyst, i.e. ~987.36 ± 49 mW/m2 against ~481.02 ± 24 mW/m2. The properties of electro-catalysts established an improved synergetic effect between TiO2 NPs and (PAni-Co-PPy). In effect, the enhanced surface area and electrochemical properties of the prepared (PAni-Co-PPy)@TiO2 nano-hybrid system is depicted here as an effective cathode catalyst in MFCs for improved performance.
Collapse
|
9
|
Begum H, Ahmed MS, Kim YB. Nitrogen-rich graphitic-carbon@graphene as a metal-free electrocatalyst for oxygen reduction reaction. Sci Rep 2020; 10:12431. [PMID: 32709940 PMCID: PMC7381605 DOI: 10.1038/s41598-020-68260-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 04/09/2020] [Indexed: 12/14/2022] Open
Abstract
The metal-free nitrogen-doped graphitic-carbon@graphene (Ng-C@G) is prepared from a composite of polyaniline and graphene by a facile polymerization following by pyrolysis for electrochemical oxygen reduction reaction (ORR). Pyrolysis creates a sponge-like with ant-cave-architecture in the polyaniline derived nitrogenous graphitic-carbon on graphene. The nitrogenous carbon is highly graphitized and most of the nitrogen atoms are in graphitic and pyridinic forms with less oxygenated is found when pyrolyzed at 800 °C. The electrocatalytic activity of Ng-C@G-800 is even better than the benchmarked Pt/C catalyst resulting in the higher half-wave potential (8 mV) and limiting current density (0.74 mA cm-2) for ORR in alkaline medium. Higher catalytic performance is originated from the special porous structure at microscale level and the abundant graphitic- and pyridinic-N active sites at the nanoscale level on carbon-graphene matrix which are beneficial to the high O2-mass transportation to those accessible sites. Also, it possesses a higher cycle stability resulting in the negligible potential shift and slight oxidation of pyridinic-N with better tolerance to the methanol.
Collapse
Affiliation(s)
- Halima Begum
- Department of Mechanical Engineering, Chonnam National University, Gwangju, Republic of Korea
| | | | - Young-Bae Kim
- Department of Mechanical Engineering, Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
10
|
Han TH, Mohapatra D, Mahato N, Parida S, Shim JH, Nguyen ATN, Nguyen VQ, Cho MH, Shim JJ. Effect of nitrogen doping on the catalytic activity of carbon nano-onions for the oxygen reduction reaction in microbial fuel cells. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.09.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
11
|
Heydorn RL, Engel C, Krull R, Dohnt K. Strategies for the Targeted Improvement of Anodic Electron Transfer in Microbial Fuel Cells. CHEMBIOENG REVIEWS 2019. [DOI: 10.1002/cben.201900023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Raymond Leopold Heydorn
- Technische Universität BraunschweigInstitute of Biochemical Engineering, Braunschweig Integrated Centre of Systems Biology Rebenring 56 38106 Braunschweig Germany
| | - Christina Engel
- Technische Universität BraunschweigInstitute of Biochemical Engineering, Braunschweig Integrated Centre of Systems Biology Rebenring 56 38106 Braunschweig Germany
| | - Rainer Krull
- Technische Universität BraunschweigInstitute of Biochemical Engineering, Braunschweig Integrated Centre of Systems Biology Rebenring 56 38106 Braunschweig Germany
| | - Katrin Dohnt
- Technische Universität BraunschweigInstitute of Biochemical Engineering, Braunschweig Integrated Centre of Systems Biology Rebenring 56 38106 Braunschweig Germany
| |
Collapse
|
12
|
Zhai DD, Fang Z, Jin H, Hui M, Kirubaharan CJ, Yu YY, Yong YC. Vertical alignment of polyaniline nanofibers on electrode surface for high-performance microbial fuel cells. BIORESOURCE TECHNOLOGY 2019; 288:121499. [PMID: 31128545 DOI: 10.1016/j.biortech.2019.121499] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Electrode modifications with conductive and nanostructured polyaniline (PANI) were recognized as efficient approach to improve interaction between electrode surface and electrogenic bacteria for boosting the performance of microbial fuel cell (MFC). However, it still showed undesirable performance because of the challenge to control the orientation (such as vertical alignment) of PANI nanostructure for extracellular electron transfer (EET). In this work, vertically aligned polyaniline (VA-PANI) on carbon cloth electrode surface were prepared by in-situ polymerization method (simply tuning the ratio of tartaric acid (TA) dopant). Impressively, the VA-PANI greatly improved the EET due to the increased opportunity to connect with conductive proteins. Eventually, MFC equipped with the VA-PANI electrodes delivered a power output of 853 mW/m2, which greatly outperformed those electrodes modified with un-oriented PANI. This work provided the possibility to control the orientation of PANI for EET and promise to harvest energy from wastewater with MFC.
Collapse
Affiliation(s)
- Dan-Dan Zhai
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhen Fang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongwei Jin
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ming Hui
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | | | - Yang-Yang Yu
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Zhenjiang Key Laboratory of Advanced Sensing Materials and Devices, School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
13
|
Heydorn RL, Engel C, Krull R, Dohnt K. Strategien zur gezielten Verbesserung des anodenseitigen Elektronentransfers in mikrobiellen Brennstoffzellen. CHEM-ING-TECH 2019. [DOI: 10.1002/cite.201800214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Raymond Leopold Heydorn
- Technische Universität BraunschweigInstitut für Bioverfahrenstechnik, Braunschweiger Zentrum für Systembiologie Rebenring 56 38106 Braunschweig Deutschland
| | - Christina Engel
- Technische Universität BraunschweigInstitut für Bioverfahrenstechnik, Braunschweiger Zentrum für Systembiologie Rebenring 56 38106 Braunschweig Deutschland
| | - Rainer Krull
- Technische Universität BraunschweigInstitut für Bioverfahrenstechnik, Braunschweiger Zentrum für Systembiologie Rebenring 56 38106 Braunschweig Deutschland
| | - Katrin Dohnt
- Technische Universität BraunschweigInstitut für Bioverfahrenstechnik, Braunschweiger Zentrum für Systembiologie Rebenring 56 38106 Braunschweig Deutschland
| |
Collapse
|
14
|
Murugan E, Kumar K. Fabrication of SnS/TiO2@GO Composite Coated Glassy Carbon Electrode for Concomitant Determination of Paracetamol, Tryptophan, and Caffeine in Pharmaceutical Formulations. Anal Chem 2019; 91:5667-5676. [DOI: 10.1021/acs.analchem.8b05531] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Eagambaram Murugan
- Department of Physical Chemistry, School of Chemical Sciences, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India
| | - Kalpana Kumar
- Department of Physical Chemistry, School of Chemical Sciences, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India
| |
Collapse
|
15
|
Novel hierarchically porous Ti-MOFs/nitrogen-doped graphene nanocomposite served as high efficient oxygen reduction reaction catalyst for fuel cells application. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.12.045] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|