1
|
Zhang Y, Yu H, Wang L, Wu X, He J, Huang W, Ouyang C, Chen D, Keshta BE. Advanced lithography materials: From fundamentals to applications. Adv Colloid Interface Sci 2024; 329:103197. [PMID: 38781827 DOI: 10.1016/j.cis.2024.103197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/09/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
The semiconductor industry has long been driven by advances in a nanofabrication technology known as lithography, and the fabrication of nanostructures on chips relies on an important coating, the photoresist layer. Photoresists are typically spin-coated to form a film and have a photolysis solubility transition and etch resistance that allow for rapid fabrication of nanostructures. As a result, photoresists have attracted great interest in both fundamental research and industrial applications. Currently, the semiconductor industry has entered the era of extreme ultraviolet lithography (EUVL) and expects photoresists to be able to fabricate sub-10 nm structures. In order to realize sub-10 nm nanofabrication, the development of photoresists faces several challenges in terms of sensitivity, etch resistance, and molecular size. In this paper, three types of lithographic mechanisms are reviewed to provide strategies for designing photoresists that can enable high-resolution nanofabrication. The discussion of the current state of the art in optical lithography is presented in depth. Practical applications of photoresists and related recent advances are summarized. Finally, the current achievements and remaining issues of photoresists are discussed and future research directions are envisioned.
Collapse
Affiliation(s)
- Yanhui Zhang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China; Zhejiang-Russia Joint Laboratory of Photo-Electron-Megnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China.
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China; Zhejiang-Russia Joint Laboratory of Photo-Electron-Megnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Xudong Wu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Jiawen He
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Wenbing Huang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Chengaung Ouyang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Dingning Chen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Basem E Keshta
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
2
|
Synthesis of branched and benzyl chlorine-free poly(4-acetoxystyrene) via living polymerization followed by Friedel–Crafts alkylation. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04437-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
3
|
Wang J, Wang Y, Liu B, Fu T. Highly photosensitive furan acrylate derivatives and their solid-state photopolymerization. NEW J CHEM 2022. [DOI: 10.1039/d2nj03138h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly photosensitive multifunctional furan acrylate monomers synthesized from biomass furfural can be photopolymerized into polyesters without photoinitiators and solvents.
Collapse
Affiliation(s)
- Jin Wang
- Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical engineering, Hefei University of Technology, Hefei 23009, P. R. China
| | - Yuanlu Wang
- Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical engineering, Hefei University of Technology, Hefei 23009, P. R. China
| | - Bingchen Liu
- Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical engineering, Hefei University of Technology, Hefei 23009, P. R. China
| | - Tao Fu
- Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical engineering, Hefei University of Technology, Hefei 23009, P. R. China
| |
Collapse
|
4
|
Summers GJ, Motsoeneng TS, Summers CA. RAFT polymerization of styrene mediated by oxazolyl-functionalized trithiocarbonate RAFT agents. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03211-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|