1
|
Screening of Pure ILs and DESs for CO2 Separation, N2O Separation, and H2S Separation Processes. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2023. [DOI: 10.1155/2023/8691957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Ionic liquids (ILs) are proposed as potential “green” solvents with remarkable properties. Deep eutectic solvents (DESs) are a new type of ILs with additional properties, such as higher biodegradability and a lower price. ILs and DESs are “green” absorbents for various gas separations, such as CO2/N2, CO2/H2/CO, H2S/CH4, and N2O/N2. Due to their large number, the screening of ILs is crucial. Although ILs with high absorption capacities were screened using gas solubility and selectivity, it is important to consider the energy and solvents used in the process. In this paper, the absorbent amount and the energy consumption were used for screening absorbents for various gas separation processes. The results reveal that physical IL [Bmim][DCA] and chemical IL [Eeim][Ac] are screened for CO2/N2 and CO2/H2/CO separation, physical IL [Omim][PF6] for H2S/CH4 separation, and physical IL [P66614][eFAP] for NO/N2 separation. The screened ILs offer some advantages over commercial absorbents in terms of lower energy consumption or amount.
Collapse
|
2
|
Zaripov ZI, Nakipov RR, Gumerov FM, Boncel S, Dzida M, Abdulagatov IM. Measurements of the thermal conductivity of 1-ethyl-3-methylimidazolium thiocyanate at temperatures from (296 to 365) K and at pressures up to 30 MPa. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
C2 methylation effect on the cohesive interaction of trifluoromethanesulfonate alkylimidazolium ionic liquidC2 methylation effect on the cohesive interaction of trifluoromethanesulfonate alkylimidazolium ionic liquids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Kuczak M, Musiał M, Malarz K, Rurka P, Zorębski E, Musioł R, Dzida M, Mrozek-Wilczkiewicz A. Anticancer potential and through study of the cytotoxicity mechanism of ionic liquids that are based on the trifluoromethanesulfonate and bis(trifluoromethylsulfonyl)imide anions. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128160. [PMID: 34979392 DOI: 10.1016/j.jhazmat.2021.128160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/05/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Ionic liquids (ILs) are known for their unique physicochemical properties. However, despite the great number of published papers, still little attention has been paid to their biological activity. Anticancer potential and the molecular mechanisms underlying the toxicity of these compounds are especially interesting and still unexplored. In the current work, a broad analysis of the cytotoxicity towards colon and breast cancers as well as glioblastoma of the ILs with pyridinium, piperidinium, pyrrolidinium, and imidazolium cations and trifluoromethanesulfonate or bis(trifluoromethylsulfonyl)imide anions indicated previously as the most toxic for normal human dermal fibroblasts were presented. In the case of MCF-7 cells, the activity of 1-decyl-3-methylimidazolium trifluoromethanesulfonate was more than twice as high as cisplatin. It was found that the inhibition of the cell cycle of colon cancer and glioblastoma cells occurs in different phases. More importantly, the different types of cell death were detected for both selected ILs, namely 1-hexyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide and 1-hexyl-3-methylimidazolium trifluoromethane-sulfonate, on colon cancer and glioblastoma, respectively, apoptosis and autophagy, confirmed at the gene and protein levels. Additionally, kinetic studies of the reactive oxygen species indicated that the tested ILs disturbed the cellular redox homeostasis.
Collapse
Affiliation(s)
- Micha Kuczak
- A. Chełkowski Institute of Physics and Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland; Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| | - Małgorzata Musiał
- A. Chełkowski Institute of Physics and Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Katarzyna Malarz
- A. Chełkowski Institute of Physics and Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Patryk Rurka
- A. Chełkowski Institute of Physics and Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland
| | - Edward Zorębski
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| | - Robert Musioł
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| | - Marzena Dzida
- Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland
| | - Anna Mrozek-Wilczkiewicz
- A. Chełkowski Institute of Physics and Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland.
| |
Collapse
|
5
|
Caeiro N, Wojtczuk MK, Rodríguez H, Rodil E, Soto A. Recovery of dialkylimidazolium-based ionic liquids from their mixtures with acetone or water by flash distillation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Dai Z, Chen Y, Liu C, Lu X, Liu Y, Ji X. Prediction and verification of heat capacities for pure ionic liquids. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.10.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
|
8
|
Thermophysical Properties of IoNanofluids Composed of 1-ethyl-3-methylimidazolium Thiocyanate and Carboxyl-functionalized Long Multi-walled Carbon Nanotubes. FLUIDS 2020. [DOI: 10.3390/fluids5040214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The concept of IoNanofluids (INFs) as the stable dispersions of nanoparticles in ionic liquids was proposed in 2009 by Nieto de Castro’s group. INFs characterize exciting properties such as improved thermal conductivity, non-volatility, and non-flammability. This work is a continuation of our studies on the morphology and physicochemistry of carbon-based nanomaterials affecting thermal conductivity, viscosity, and density of INFs. We focus on the characterization of dispersions composed of long carboxylic group-functionalized multi-walled carbon nanotubes and 1-ethyl-3-methylimidazolium thiocyanate. The thermal conductivity of INFs was measured using KD2 Pro Thermal Properties Analyzer (Decagon Devices Inc., Pullman, WA, USA). The viscosity was investigated using rotary viscometer LV DV-II+Pro (Brookfield Engineering, Middleboro, MA, USA). The density of INFs was measured using a vibrating tube densimeter Anton Paar DMA 5000 (Graz, Austria). The maximum thermal conductivity enhancement of 22% was observed for INF composed of 1 wt% long carboxylic group-functionalized multi-walled carbon nanotubes.
Collapse
|
9
|
Musiał M, Cheng S, Wojnarowska Z, Paluch M. Density, viscosity, and high-pressure conductivity studies of tricyanomethanide-based ionic liquids. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113971] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Musiał M, Cheng S, Wojnarowska Z, Yao B, Jurkiewicz K, Paluch M. Thorough studies of tricyanomethanide-based ionic liquids - the influence of alkyl chain length of the cation. SOFT MATTER 2020; 16:9479-9487. [PMID: 32955538 DOI: 10.1039/d0sm01433h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The glassy, supercooled, and normal liquid states of the 1-alkyl-3-methylimidazolium tricyanomethanide series [CnC1im][TCM] (n = 2, 4, 6, 8, and 16) were investigated by dielectric and mechanical (rheological) experiments supplemented by X-ray diffraction. The conductivity relaxation was found to be accompanied by a pronounced secondary relaxation. However, based on ambient and high-pressure results as well as the coupling model, we assumed that the latter one can not be classified as Johari-Goldstein relaxation. Moreover, the studies on the nanoscale organization of ionic liquids indicated that 1-alkyl-3-methylimidazolium tricyanomethanide ILs begin to form nanoscale aggregates when the alkyl chain of the cation has six carbon atoms.
Collapse
Affiliation(s)
- Małgorzata Musiał
- Institute of Physics, University of Silesia in Katowice, Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland.
| | - Shinian Cheng
- Institute of Physics, University of Silesia in Katowice, Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland.
| | - Zaneta Wojnarowska
- Institute of Physics, University of Silesia in Katowice, Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland.
| | - Beibei Yao
- Institute of Physics, University of Silesia in Katowice, Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland.
| | - Karolina Jurkiewicz
- Institute of Physics, University of Silesia in Katowice, Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland.
| | - Marian Paluch
- Institute of Physics, University of Silesia in Katowice, Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland.
| |
Collapse
|
11
|
Cheng S, Musiał M, Wojnarowska Z, Ngai K, Jacquemin J, Paluch M. Universal scaling behavior of entropy and conductivity in ionic liquids. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Recovery of the ionic liquids [C2mim][OAc] or [C2mim][SCN] by distillation from their binary mixtures with methanol or ethanol. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Ganem F, Mattedi S, Rodil E, Soto A. Separation of Linalool from Limonene via Extractive Distillation with 1-Butyl-3-methylimidazolium Acetate as Entrainer. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fernanda Ganem
- Chemical Engineering Graduate Program, Polytechnic School, Federal University of Bahia, Rua Aristides Novis 2, Federação, 40210-630 Salvador-BA, Brazil
| | - Silvana Mattedi
- Chemical Engineering Graduate Program, Polytechnic School, Federal University of Bahia, Rua Aristides Novis 2, Federação, 40210-630 Salvador-BA, Brazil
| | - Eva Rodil
- CRETUS Institute, Chemical Engineering Department - ETSE, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | - Ana Soto
- CRETUS Institute, Chemical Engineering Department - ETSE, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| |
Collapse
|
14
|
Jóźwiak B, Dzido G, Zorȩbski E, Kolanowska A, Jȩdrysiak R, Dziadosz J, Libera M, Boncel S, Dzida M. Remarkable Thermal Conductivity Enhancement in Carbon-Based Ionanofluids: Effect of Nanoparticle Morphology. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38113-38123. [PMID: 32649171 PMCID: PMC7458364 DOI: 10.1021/acsami.0c09752] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Transfer of the excellent intrinsic properties of individual carbon nanoparticles into real-life applications of the corresponding heat transfer fluids remains challenging. This process requires identification and quantification of the nanoparticle-liquid interface. Here, for the first time, we have determined geometry and properties of this interface by applying transmission electron cryomicroscopy (cryo-TEM). We have systematically investigated how the particle morphology of carbon-based nanomaterials affected the thermal conductivity, specific isobaric heat capacity, thermal diffusivity, density, and viscosity of ionanofluids and/or bucky gels, using a wide range of fillers, especially single-walled carbon nanotubes (SWCNTs) and multiwalled carbon nanotubes (MWCNTs), both with extreme values of aspect ratio (length to diameter ratio) from 150 to 11 000. Accordingly, hybrid systems composed of various carbon nanomaterials and ionic liquid, namely 1-ethyl-3-methylimidazolium thiocyanate [EMIM][SCN], were prepared and characterized. Most of the analyzed nanodispersions exhibited long-term stability even without any surfactant. Our study revealed that the thermal conductivity could be remarkably improved to the maximum values of 43.9% and 67.8% for ionanofluid and bucky gel (at 1 wt % loadings of MWCNTs and SWCNTs), respectively, compared to the pristine ionic liquid. As a result, the model proposed by Murshed and co-workers has been improved for realistic description of the concentration-dependent thermal conductivity of such hybrid systems. The obtained results undoubtedly indicate the potential of ionanofluids and bucky gels for energy management.
Collapse
Affiliation(s)
- Bertrand Jóźwiak
- Silesian University
of Technology, Department of Organic Chemistry, Bioorganic Chemistry
and Biotechnology, Bolesława Krzywoustego 4, 44-100 Gliwice, Poland
| | - Grzegorz Dzido
- Silesian University
of Technology, Department of Chemical Engineering
and Process Design, Marcina
Strzody 7, 44-100, Gliwice, Poland
| | - Edward Zorȩbski
- University of Silesia in
Katowice, Institute of Chemistry, Szkolna 9, 40-006 Katowice, Poland
| | - Anna Kolanowska
- Silesian University
of Technology, Department of Organic Chemistry, Bioorganic Chemistry
and Biotechnology, Bolesława Krzywoustego 4, 44-100 Gliwice, Poland
| | - Rafał Jȩdrysiak
- Silesian University
of Technology, Department of Organic Chemistry, Bioorganic Chemistry
and Biotechnology, Bolesława Krzywoustego 4, 44-100 Gliwice, Poland
| | - Justyna Dziadosz
- University of Silesia in
Katowice, Institute of Chemistry, Szkolna 9, 40-006 Katowice, Poland
| | - Marcin Libera
- University of Silesia in
Katowice, Institute of Chemistry, Szkolna 9, 40-006 Katowice, Poland
| | - Sławomir Boncel
- Silesian University
of Technology, Department of Organic Chemistry, Bioorganic Chemistry
and Biotechnology, Bolesława Krzywoustego 4, 44-100 Gliwice, Poland
| | - Marzena Dzida
- University of Silesia in
Katowice, Institute of Chemistry, Szkolna 9, 40-006 Katowice, Poland
| |
Collapse
|
15
|
Effect of alkyl chain length in cation on thermophysical properties of two homologous series: 1-alkyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imides and 1-alkyl-3-methylimidazolium trifluoromethanesulfonates. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111511] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Dzida M, Musiał M, Zorębski E, Zorębski M, Jacquemin J, Goodrich P, Wojnarowska Z, Paluch M. Comparative study of effect of alkyl chain length on thermophysical characteristics of five N-alkylpyridinium bis(trifluoromethylsulfonyl)imides with selected imidazolium-based ionic liquids. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Musiał M, Zorębski M, Dzida M, Safarov J, Zorębski E, Hassel E. High pressure speed of sound and related properties of 1‑ethyl‑3‑methylimidazolium methanesulfonate. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|