1
|
Yang T, Jiang C, Zhang L, Du Y, Fan J, Zhang L, Liang F. Waterproof and Flame-Retardant Fabric Coating with Nail-Tie Structure was Constructed by Janus Particles with Strong Mechanical, Physical, and Chemical Durability. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54166-54175. [PMID: 37943181 DOI: 10.1021/acsami.3c12590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Oil spills are one of the most dangerous sources that cause serious environmental pollution and fire and explosion. In this work, multifunctional separator silica@polydivinylbenzene/poly 2,6-dimethyl-1, 4-phenyl ether (silica@PDVB/PPE) Janus particles were fabricated via seed emulsion polymerization, causing phase segregation as well as selective modification. The epoxy modified silica is partially covalently bonded to the fabric substrate surface by simple spraying to achieve a strong composite coating. The low surface energy PDVB/PPE forms a micronano rough layered surface, which can achieve a super hydrophobic and lipophile surface (WCA = 155°) and obtain a high flux separation of water and oil at 32,700 L·m-2·h-1. At the same time, the Janus composite fabric coating has the advantages of high heat resistance and flame retardant, which is realized by halogen-free flame-retardant unsaturated polyphosphate (PPE), making Janus fabric have potential value in separating oil-water mixtures and fire protection applications. In addition, the coating shows excellent chemical durability. After soaking in various aqueous solvents and organic solvents for 30 h, it can still maintain superhydrophobicity and flame retardant. The coating still has water repellency and flame retardant after 50 washings and mechanical wear and has good mechanical durability.
Collapse
Affiliation(s)
- Tiantian Yang
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Chengzhen Jiang
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Linnan Zhang
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Yi Du
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jiangtao Fan
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, College of Material Sciene and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Linlin Zhang
- Shenyang Key Laboratory for New Functional Coating Materials, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Fuxin Liang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Walkowiak JJ, van Duijnhoven C, Boeschen P, Wolter NA, Michalska-Walkowiak J, Dulle M, Pich A. Multicompartment polymeric colloids from functional precursor Microgel: Synthesis in continuous process. J Colloid Interface Sci 2023; 634:243-254. [PMID: 36535162 DOI: 10.1016/j.jcis.2022.12.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/25/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022]
Abstract
Raspberry-like poly(oligoethylene methacrylate-b-N-vinylcaprolactam)/polystyrene (POEGMA-b-PVCL/PS) patchy particles (PPs) and complex colloidal particle clusters (CCPCs) were fabricated in two-, and one-step (cascade) flow process. Surfactant-free, photo-initiated reversible addition-fragmentation transfer (RAFT) precipitation polymerization (Photo-RPP) was used to develop internally cross-linked POEGMA-b-PVCL microgels with narrow size distribution. Resulting microgel particles were then used to stabilize styrene seed droplets in water, producing raspberry-like PPs. In the cascade process, different hydrophobicity between microgel and PS induced the self-assembly of the first formed raspberry particles that then polymerized continuously in a Pickering emulsion to form the CCPCs. The internal structure as well as the surface morphology of PPs and CCPCs were studied as a function of polymerization conditions such as flow rate/retention time (Rt), temperature and the amount of used cross-linker. By performing Photo-RPP in tubular flow reactor we were able to gained advantages over heat dissipation and homogeneous light distribution in relation to thermally-, and photo-initiated bulk polymerizations. Tubular reactor also enabled detailed studies over morphological evolution of formed particles as a function of flow rate/Rt.
Collapse
Affiliation(s)
- Jacek J Walkowiak
- DWI - Leibniz-Institute for Interactive Materials e.V, Forckenbeckstraße 50, 52074 Aachen, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany; Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, 6167 RD Geleen, The Netherlands.
| | - Casper van Duijnhoven
- Zuyd University of Applied Sciences, Nieuw Eyckholt 300, 6419 DJ Heerlen, The Netherlands.
| | - Pia Boeschen
- Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, 6167 RD Geleen, The Netherlands.
| | - Nadja A Wolter
- DWI - Leibniz-Institute for Interactive Materials e.V, Forckenbeckstraße 50, 52074 Aachen, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany.
| | - Joanna Michalska-Walkowiak
- Jülich Centre for Neutron Science (JCNS-1), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straβe, 52428 Jülich, Germany; CNRS, UMR 8232 - IPCM - Institut Parisien de Chimie Moléculaire - Polymer Chemistry Team, Sorbonne Université, 4 Pl. Jussieu, 75005 Paris, France.
| | - Martin Dulle
- Jülich Centre for Neutron Science (JCNS-1), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straβe, 52428 Jülich, Germany.
| | - Andrij Pich
- DWI - Leibniz-Institute for Interactive Materials e.V, Forckenbeckstraße 50, 52074 Aachen, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany; Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Urmonderbaan 22, 6167 RD Geleen, The Netherlands.
| |
Collapse
|
3
|
Peng Z, Huang J, Guo Z. Anisotropic Janus materials: from micro-/nanostructures to applications. NANOSCALE 2021; 13:18839-18864. [PMID: 34757351 DOI: 10.1039/d1nr05499f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Janus materials have led to great achievements in recent years owing to their unique asymmetric structures and properties. In this review, recent advances of Janus materials including Janus particles and Janus membranes are summarized, and then the microstructures and applications of Janus materials are emphasized. The asymmetric wettability of Janus materials is related to their microstructures; hence, the microstructures of Janus materials were analyzed, compared and summarized. Also presented are current and potential applications in sensing, drug delivery, oil-water separation and so on. Finally, a perspective on the research prospects and development of Janus materials in more fields is given.
Collapse
Affiliation(s)
- Zhouliang Peng
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
4
|
Yang T, Li Y, Gui H, Du D, Du Y, Song XM, Liang F. Superhydrophobic Coating Derived from the Spontaneous Orientation of Janus Particles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25392-25399. [PMID: 34008938 DOI: 10.1021/acsami.1c05571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A superhydrophobic surface was achieved using a monolayer of the perpendicularly oriented epoxy-silica@polydivinylbenzene (PDVB) Janus particles (JPs) on an epoxy resin substrate. The epoxy-silica@PDVB JPs were synthesized from the silica@PDVB/polystyrene (PS) JPs through selective etching of the PDVB/PS belly and the surface modification of the silica part. The modified silica parts can be covalently bonded with the epoxy resin to make the perpendicular orientation spontaneous as well as the coating more robust. The outward PDVB bellies can constitute the micro-/nanoscale hierarchical structures for the superhydrophobic property. The superhydrophobic coating exhibits water repellence and self-cleaning properties. Moreover, the coating exhibits good chemical durability that it can keep the superhydrophobic property after long-time immersion in various aqueous solutions and organic solvents. The coating is still superhydrophobic after water flushing and mechanical wearing, showing the perfect mechanical durability.
Collapse
Affiliation(s)
- Tiantian Yang
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, Liaoning University, Shenyang 110036, China
| | - Yuanyuan Li
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, Liaoning University, Shenyang 110036, China
| | - Haoguan Gui
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Deming Du
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yi Du
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xi-Ming Song
- Liaoning Provincial Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, Liaoning University, Shenyang 110036, China
| | - Fuxin Liang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Jiang Y, Pan M, Yuan J, Wang J, Song S, Liu G. Fabrication and structural characterization of poly(vinylidene fluoride)/polyacrylate composite waterborne coatings with excellent weather resistance and room-temperature curing. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Naikwadi D, Ravi K, Singh AS, Advani JH, Biradar AV. Gram-Scale Synthesis of Flavoring Ketones in One Pot via Alkylation-Decarboxylation on Benzylic Carbon Using a Commercial Solid Acid Catalyst. ACS OMEGA 2020; 5:14291-14296. [PMID: 32596566 PMCID: PMC7315435 DOI: 10.1021/acsomega.0c00416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
The gram-scale synthesis of important flavoring ketones via alkylation of acetoacetic ester on substituted benzylic carbon followed by decarboxylation using a heterogeneous, commercial, solid acid catalyst is reported. The flavoring ketones were synthesized by the alkylation of acetoacetic ester, which proceeds through an SN1-type reaction to generate an alkylated (β-ketoester) intermediate at the benzylic carbon, which is decarboxylated under the acidic condition. Among the solid acid catalysts used, Amberlyst-15 was found to be the best catalyst under the solvent-free condition. This protocol was successfully employed for the synthesis of various flavoring ketones such as raspberry ketone and ginger ketone with almost complete conversion and 82% isolated yield. The para-donating groups on the benzylic alcohol showed a high rate of reaction. The catalyst was easily recovered and reused 6 times without losing its activity and selectivity. Moreover, this reaction was demonstrated at a 10 g scale, which implicated the potential applicability of the protocol in the industry.
Collapse
Affiliation(s)
- Dhanaji
R. Naikwadi
- Inorganic
Materials and Catalysis Division, CSIR-Central
Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Krishnan Ravi
- Inorganic
Materials and Catalysis Division, CSIR-Central
Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Amravati S. Singh
- Inorganic
Materials and Catalysis Division, CSIR-Central
Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Jacky H. Advani
- Inorganic
Materials and Catalysis Division, CSIR-Central
Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Ankush V. Biradar
- Inorganic
Materials and Catalysis Division, CSIR-Central
Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
7
|
Wang Y, Li C, Zhang X, Lin Q, Jiang Y, Yuan J, Pan M. Poly(vinylidene chloride)/Poly(chlorotrifluoroethylene‐
co
‐acrylates) Composite Latex Coating Cured at Room Temperature Showing an Excellent Corrosion Resistance. ChemistrySelect 2020. [DOI: 10.1002/slct.202000651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yanxu Wang
- Institute of Polymer Science and EngineeringSchool of Chemical Engineering and TechnologyHebei University of Technology Tianjin 300130 PR China
| | - Chao Li
- Institute of Polymer Science and EngineeringSchool of Chemical Engineering and TechnologyHebei University of Technology Tianjin 300130 PR China
| | - Xiaopeng Zhang
- Institute of Polymer Science and EngineeringSchool of Chemical Engineering and TechnologyHebei University of Technology Tianjin 300130 PR China
| | - Qianqian Lin
- Institute of Polymer Science and EngineeringSchool of Chemical Engineering and TechnologyHebei University of Technology Tianjin 300130 PR China
| | - Yuan Jiang
- Institute of Polymer Science and EngineeringSchool of Chemical Engineering and TechnologyHebei University of Technology Tianjin 300130 PR China
| | - Jinfeng Yuan
- Institute of Polymer Science and EngineeringSchool of Chemical Engineering and TechnologyHebei University of Technology Tianjin 300130 PR China
- Hebei Key Laboratory of Functional PolymersHebei University of Technology Tianjin 300130 PR China
| | - Mingwang Pan
- Institute of Polymer Science and EngineeringSchool of Chemical Engineering and TechnologyHebei University of Technology Tianjin 300130 PR China
- Hebei Key Laboratory of Functional PolymersHebei University of Technology Tianjin 300130 PR China
| |
Collapse
|
8
|
Abstract
The strategies used for the preparation of raspberry-like polymer composite particles are summarized comprehensively.
Collapse
Affiliation(s)
- Hua Zou
- School of Materials Science and Engineering
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
| | - Shuxia Zhai
- School of Materials Science and Engineering
- University of Shanghai for Science and Technology
- Shanghai 200093
- China
| |
Collapse
|
9
|
Zeng R, Chen Y, Zhang L, Tan J. Uncontrolled polymerization that occurred during photoinitiated RAFT dispersion polymerization of acrylic monomers promotes the formation of uniform raspberry-like polymer particles. Polym Chem 2020. [DOI: 10.1039/d0py00678e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Uniform raspberry-like polymer particles are prepared by a different type of photoinitiated RAFT dispersion polymerization.
Collapse
Affiliation(s)
- Ruiming Zeng
- Department of Polymeric Materials and Engineering
- School of Materials and Energy
- Guangdong University of Technology
- Guangzhou 510006
- China
| | - Ying Chen
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter
- Guangzhou 510006
- China
| | - Li Zhang
- Department of Polymeric Materials and Engineering
- School of Materials and Energy
- Guangdong University of Technology
- Guangzhou 510006
- China
| | - Jianbo Tan
- Department of Polymeric Materials and Engineering
- School of Materials and Energy
- Guangdong University of Technology
- Guangzhou 510006
- China
| |
Collapse
|
10
|
Morphology-Tailored Gold Nanoraspberries Based on Seed-Mediated Space-Confined Self-Assembly. NANOMATERIALS 2019; 9:nano9091202. [PMID: 31461840 PMCID: PMC6780137 DOI: 10.3390/nano9091202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/03/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022]
Abstract
Raspberry-like structure, providing a high degree of symmetry and strong interparticle coupling, has received extensive attention from the community of functional material synthesis. Such structure constructed in the nanoscale using gold nanoparticles has broad applicability due to its tunable collective plasmon resonances, while the synthetic process with precise control of the morphology is critical in realizing its target functions. Here, we demonstrate a synthetic strategy of seed-mediated space-confined self-assembly using the virus-like silica (V-SiO2) nanoparticles as the templates, which can yield gold nanoraspberries (AuNRbs) with uniform size and controllable morphology. The spikes on V-SiO2 templates serve dual functions of providing more growth sites for gold nanoseeds and activating the space-confined effect for gold nanoparticles. AuNRbs with wide-range tunability of plasmon resonances from the visible to near infrared (NIR) region have been successfully synthesized, and how their geometric configurations affect their optical properties is thoroughly discussed. The close-packed AuNRbs have also demonstrated huge potential in Raman sensing due to their abundant “built-in” hotspots. This strategy offers a new route towards synthesizing high-quality AuNRbs with the capability of engineering the morphology to achieve target functions, which is highly desirable for a large number of applications.
Collapse
|
11
|
Wang J, Pan M, Yuan J, Wang Y, Liu G, Zhu L. Revisiting the Classical Emulsion Polymerization: An Intriguing Occurrence of Monodispersed Bowl-Shaped Particles. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Juan Wang
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Mingwang Pan
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
- National-Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Jinfeng Yuan
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Yajiao Wang
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Gang Liu
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Lei Zhu
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7202, United States
| |
Collapse
|
12
|
Zheng H, Pan M, Wen J, Yuan J, Zhu L, Yu H. Robust, Transparent, and Superhydrophobic Coating Fabricated with Waterborne Polyurethane and Inorganic Nanoparticle Composites. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00052] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hao Zheng
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People’s Republic of China
| | - Mingwang Pan
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People’s Republic of China
| | - Jie Wen
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People’s Republic of China
| | - Jinfeng Yuan
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People’s Republic of China
| | - Lei Zhu
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7202, United States
| | - Haifeng Yu
- Department of Material Science and Engineering, College of Engineering and Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|