1
|
Zhao Y, Xu Z, Li M, Zhou L, Liu M, Yang D, Zeng J, Xie R, Hu W, Dong F. S defect-rich MoS 2 aerogel with hierarchical porous structure: Efficient photocatalysis and convenient reuse for removal of organic dyes. CHEMOSPHERE 2024; 354:141649. [PMID: 38458356 DOI: 10.1016/j.chemosphere.2024.141649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
To avoid the difficulty of separating solids from liquids when reusing powder photocatalysts, 3D stereoscopic photocatalysts were constructed. In this study, three-dimensional S defect-rich MoS2 hierarchical aerogel was prepared by chemical cross-linking of functional ultrathin 2D MoS2. Its phase, micro-morphology and structure were characterized, and it was used in the study of photocatalytic degradation of organic pollutants. Of the samples tested, MS@CA-3 (i.e., defect-rich 3D MoS2 aerogel with a loading of 30 mg of defect-rich MoS2) exhibited the best photocatalytic activity due to its suitable load, good light transmission, and a degradation rate of up to 91.0% after 3 h. In addition, MS@CA-3 aerogel offers high recyclability and structural stability, and the degradation rate of the organic pollutant methylene blue decreases only 9.8% after more than ten cycles of photocatalytic degradation. It combines the high catalytic performance of S defect-rich 2D MoS2 and the convenient reusability of hierarchical porous aerogel. This study provides valuable data and a reference for the practical promotion and application of photocatalytic technology in the field of environmental remediation.
Collapse
Affiliation(s)
- Yu Zhao
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang, 621000, PR China; School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Zhihao Xu
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang, 621000, PR China; School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Meijuan Li
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Lei Zhou
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang, 621000, PR China
| | - Mingxue Liu
- Key Laboratory of Solid Waste Treatment and Resource Recycling, Ministry of Education of China, Mianyang, 621010, PR China
| | - Dingming Yang
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China
| | - Jiawei Zeng
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang, 621010, PR China.
| | - Ruzhen Xie
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China
| | - Wenyuan Hu
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang, 621000, PR China; School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, PR China; NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang, 621010, PR China.
| | - Faqin Dong
- Key Laboratory of Solid Waste Treatment and Resource Recycling, Ministry of Education of China, Mianyang, 621010, PR China.
| |
Collapse
|
2
|
Sun X, Yang Y, Yu J, Wei Q, Ren X. Chitosan-based supramolecular aerogel with "skeletal structure" constructed in natural deep eutectic solvents for medical dressings. Int J Biol Macromol 2024; 254:127720. [PMID: 37913882 DOI: 10.1016/j.ijbiomac.2023.127720] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
Bacterial infection of wounds remains one of the major clinical challenges, calling for the urgent development of novel multifunctional biological dressings. In this study, we developed a chitosan-based supramolecular aerogel NADES/PVA/CS, constructed by hydrogen bonding between chitosan, a natural deep eutectic solvents and polyvinyl alcohol, as a novel wound dressing against bacterial infections. The effect of polyvinyl alcohol content and its incorporation within chitosan-based supramolecular aerogels were investigated. The results of antibacterial test and MTT assay showed that it has obvious inhibitory effect on Staphylococcus aureus and Escherichia coli, showing excellent biocompatibility and effectively promotes wound healing. The microstructure of chitosan-based supramolecular aerogel showed that by adjusting the addition amount of polyvinyl alcohol, it could exhibit a perfect skeleton-type 3D network structure, which also made it possess smaller density and larger porosity and exhibit excellent water absorption property, contributing to the wetting of wound surface. More importantly, chitosan-based supramolecular aerogel is an environment-friendly biomaterial, which has been verified by degradability experiment. In a word, these unique advantages provide a broad prospect for the medical application of chitosan-based supramolecular aerogel NADES/PVA/CS, and provide a new strategy for the construction of green polysaccharide medical materials.
Collapse
Affiliation(s)
- Xiangyu Sun
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150000, China; School of Marine Science and Technology, Harbin Institute of Technology, Weihai, Shandong 264209, China
| | - Yan Yang
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, Shandong 264209, China
| | - Jiaming Yu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150000, China; School of Marine Science and Technology, Harbin Institute of Technology, Weihai, Shandong 264209, China
| | - Qifeng Wei
- School of Marine Science and Technology, Harbin Institute of Technology, Weihai, Shandong 264209, China.
| | - Xiulian Ren
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150000, China; School of Marine Science and Technology, Harbin Institute of Technology, Weihai, Shandong 264209, China.
| |
Collapse
|
3
|
Takeshita S, Ono T. Biopolymer-Polysiloxane Double Network Aerogels. Angew Chem Int Ed Engl 2023; 62:e202306518. [PMID: 37466360 DOI: 10.1002/anie.202306518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Indexed: 07/20/2023]
Abstract
A new series of transparent aerogels of biopolymer-polysiloxane double networks is reported. Biopolymer aerogels have attracted much attention from green and sustainable aspects but suffered from strong hydrophilicity and difficulty to make homogeneous structures in nanoscale; these drawbacks are overcome by compositing with a polysiloxane network. Alginate-polymethylsilsesquioxane aerogel has high optical transparency, water repellency, comparable superinsulation property and improved bending flexibility compared to pure polymethylsilsesquioxane aerogel. The nanoscale homogeneity is realized by separating the crosslinking steps for two networks in a sequential protocol: condensation of siloxane bonds and metal-crosslinking of biopolymer. The crosslinking order, biopolymer-first or siloxane-first, and universality/limitation of biopolymer-crosslinker pairs are discussed to construct fundamental chemistry of double network systems for their further application potentials.
Collapse
Affiliation(s)
- Satoru Takeshita
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, 3058565, Tsukuba, Japan
| | - Takumi Ono
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, 3058565, Tsukuba, Japan
| |
Collapse
|
4
|
Superior intrinsic flame-retardant phosphorylated chitosan aerogel as fully sustainable thermal insulation bio-based material. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Song Y, Zhao Q, Qu M, Zhang R, Tang P, Bin Y, Li S, Zhao W, Wang H. Chitosan-based thermal insulation compressible foam enhanced with high performance of piezoelectric generation and sensing. Carbohydr Polym 2022; 294:119775. [DOI: 10.1016/j.carbpol.2022.119775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 11/02/2022]
|
6
|
Nanocellular foaming of poly (methyl methacrylate) with chlorodifluoromethane (HCFC-22)/CO2 binary mixtures as a model blowing agent. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2021.105502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Rizal S, Yahya EB, Abdul Khalil HPS, Abdullah CK, Marwan M, Ikramullah I, Muksin U. Preparation and Characterization of Nanocellulose/Chitosan Aerogel Scaffolds Using Chemical-Free Approach. Gels 2021; 7:gels7040246. [PMID: 34940306 PMCID: PMC8701007 DOI: 10.3390/gels7040246] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 12/13/2022] Open
Abstract
Biopolymer-based aerogels are open three-dimensional porous materials that are characterized by outstanding properties, such as a low density, high porosity and high surface area, in addition to their biocompatibility and non-cytotoxicity. Here we fabricated pure and binary blended aerogels from cellulose nanofibers (CNFs) and chitosan (CS), using a chemical-free approach that consists of high-pressure homogenization and freeze-drying. The prepared aerogels showed a different porosity and density, depending on the material and mixing ratio. The porosity and density of the aerogels ranged from 99.1 to 90.8% and from 0.0081 to 0.141 g/cm3, respectively. Pure CNFs aerogel had the highest porosity and lightest density, but it showed poor mechanical properties and a high water absorption capacity. Mixing CS with CNFs significantly enhance the mechanical properties and reduce its water uptake. The two investigated ratios of aerogel blends had superior mechanical and thermal properties over the single-material aerogels, in addition to reduced water uptake and 2-log antibacterial activity. This green fabrication and chemical-free approach could have great potential in the preparation of biopolymeric scaffolds for different biomedical applications, such as tissue-engineering scaffolds.
Collapse
Affiliation(s)
- Samsul Rizal
- Department of Mechanical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
- Correspondence: (S.R.); (E.B.Y.); (A.K.H.P.S.)
| | - Esam Bashir Yahya
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
- Correspondence: (S.R.); (E.B.Y.); (A.K.H.P.S.)
| | - H. P. S. Abdul Khalil
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
- Correspondence: (S.R.); (E.B.Y.); (A.K.H.P.S.)
| | - C. K. Abdullah
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia;
| | - Marwan Marwan
- Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
| | - Ikramullah Ikramullah
- Department of Mechanical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
| | - Umar Muksin
- Department of Physics, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
| |
Collapse
|
8
|
Takeshita S, Zhao S, Malfait WJ, Koebel MM. Chemie der Chitosan‐Aerogele: Lenkung der dreidimensionalen Poren für maßgeschneiderte Anwendungen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202003053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Satoru Takeshita
- Building Energy Materials & Components Laboratory Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa) Überlandstrasse 129 CH-8600 Dübendorf Schweiz
- Research Institute for Chemical Process Technology National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi 3058565 Tsukuba Japan
| | - Shanyu Zhao
- Building Energy Materials & Components Laboratory Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa) Überlandstrasse 129 CH-8600 Dübendorf Schweiz
| | - Wim J. Malfait
- Building Energy Materials & Components Laboratory Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa) Überlandstrasse 129 CH-8600 Dübendorf Schweiz
| | - Matthias M. Koebel
- Building Energy Materials & Components Laboratory Eidgenössische Materialprüfungs- und Forschungsanstalt (Empa) Überlandstrasse 129 CH-8600 Dübendorf Schweiz
| |
Collapse
|
9
|
Eco-Friendly Synthesis of Water-Glass-Based Silica Aerogels via Catechol-Based Modifier. NANOMATERIALS 2020; 10:nano10122406. [PMID: 33271971 PMCID: PMC7761200 DOI: 10.3390/nano10122406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/19/2020] [Accepted: 11/27/2020] [Indexed: 11/30/2022]
Abstract
Silica aerogels have attracted much attention owing to their excellent thermal insulation properties. However, the conventional synthesis of silica aerogels involves the use of expensive and toxic alkoxide precursors and surface modifiers such as trimethylchlorosilane. In this study, cost-effective water-glass silica aerogels were synthesized using an eco-friendly catechol derivative surface modifier instead of trimethylchlorosilane. Polydopamine was introduced to increase adhesion to the SiO2 surface. The addition of 4-tert-butyl catechol and hexylamine imparted hydrophobicity to the surface and suppressed the polymerization of the polydopamine. After an ambient pressure drying process, catechol-modified aerogel exhibited a specific surface area of 377 m2/g and an average pore diameter of approximately 21 nm. To investigate their thermal conductivities, glass wool sheets were impregnated with catechol-modified aerogel. The thermal conductivity was 40.4 mWm−1K−1, which is lower than that of xerogel at 48.7 mWm−1K−1. Thus, by precisely controlling the catechol coating in the mesoporous framework, an eco-friendly synthetic method for aerogel preparation is proposed.
Collapse
|
10
|
Takeshita S, Zhao S, Malfait WJ, Koebel MM. Chemistry of Chitosan Aerogels: Three‐Dimensional Pore Control for Tailored Applications. Angew Chem Int Ed Engl 2020; 60:9828-9851. [DOI: 10.1002/anie.202003053] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/06/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Satoru Takeshita
- Building Energy Materials & Components Laboratory Swiss Federal Laboratories for Materials Science and Technology (Empa) Überlandstrasse 129 CH-8600 Dübendorf Switzerland
- Research Institute for Chemical Process Technology National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Central 5, 1-1-1 Higashi 3058565 Tsukuba Japan
| | - Shanyu Zhao
- Building Energy Materials & Components Laboratory Swiss Federal Laboratories for Materials Science and Technology (Empa) Überlandstrasse 129 CH-8600 Dübendorf Switzerland
| | - Wim J. Malfait
- Building Energy Materials & Components Laboratory Swiss Federal Laboratories for Materials Science and Technology (Empa) Überlandstrasse 129 CH-8600 Dübendorf Switzerland
| | - Matthias M. Koebel
- Building Energy Materials & Components Laboratory Swiss Federal Laboratories for Materials Science and Technology (Empa) Überlandstrasse 129 CH-8600 Dübendorf Switzerland
| |
Collapse
|
11
|
Solvents, CO 2 and biopolymers: Structure formation in chitosan aerogel. Carbohydr Polym 2020; 247:116680. [PMID: 32829808 DOI: 10.1016/j.carbpol.2020.116680] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 02/01/2023]
Abstract
The functionality of biopolymer aerogels is inherently linked to its microstructure, which in turn depends on the synthesis protocol. Detailed investigations on the macroscopic size change and nanostructure formation during chitosan aerogel synthesis reveal a new aspect of biopolymer aerogels that increases process flexibility. Formaldehyde-cross-linked chitosan gels retain a significant fraction of their original volume after solvent exchange into methanol (50.3 %), ethanol (47.1 %) or isopropanol (26.7 %), but shrink dramatically during subsequent supercritical CO2 processing (down to 4.9 %, 3.5 % and 3.7 %, respectively). In contrast, chitosan gels shrink more strongly upon exchange into n-heptane (7.2 %), a low affinity solvent, and retain this volume during CO2 processing. Small-angle X-ray scattering confirms that the occurrence of the volumetric changes correlates with mesoporous network formation through physical coagulation in CO2 or n-heptane. The structure formation step can be controlled by solvent-polymer and polymer-drying interactions, which would be a new tool to tailor the aerogel structure.
Collapse
|
12
|
Takeshita S, Zhao S, Malfait WJ. Transparent, Aldehyde-Free Chitosan Aerogel. Carbohydr Polym 2020; 251:117089. [PMID: 33142630 DOI: 10.1016/j.carbpol.2020.117089] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/16/2020] [Accepted: 09/08/2020] [Indexed: 01/01/2023]
Abstract
Aldehyde-free, transparent chitosan aerogel is reported. The aerogel was prepared by thermal decomposition of urea to induce gelation of a chitosan solution, followed by solvent exchange to ethanol, and supercritical drying. Low urea concentrations (≤ 25 g L-1) result in transparent and highly mesoporous aerogels, while higher urea concentrations (≥ 30 g L-1) produce opaque, more macroporous aerogels. The high surface areas of > 400 m2 g-1, large mesopore volumes up to 3.5 cm3 g-1, and optical transparency of the low-urea aerogels indicate a high structural homogeneity at the mesoscale, and the properties comparable to previously reported transparent chitosan aerogels prepared with formaldehyde crosslinking. The macroscopic size changes of the wet gels indicate that microstructure formation is controlled by the timing of chitosan coagulation, which depends among others on urea concentration. The aldehyde-free, microstructure-tunable process provides a new series of transparent biopolymer aerogels with "true aerogel" mesoporous structures.
Collapse
Affiliation(s)
- Satoru Takeshita
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 3058565, Japan; Laboratory for Building Energy Materials and Components, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf, CH-8600, Switzerland.
| | - Shanyu Zhao
- Laboratory for Building Energy Materials and Components, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf, CH-8600, Switzerland.
| | - Wim J Malfait
- Laboratory for Building Energy Materials and Components, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf, CH-8600, Switzerland.
| |
Collapse
|
13
|
New Trends in Bio-Based Aerogels. Pharmaceutics 2020; 12:pharmaceutics12050449. [PMID: 32414217 PMCID: PMC7284463 DOI: 10.3390/pharmaceutics12050449] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/27/2020] [Accepted: 05/11/2020] [Indexed: 01/16/2023] Open
Abstract
(1) Background: The fascinating properties of currently synthesized aerogels associated with the flexible approach of sol-gel chemistry play an important role in the emergence of special biomedical applications. Although it is increasingly known and mentioned, the potential of aerogels in the medical field is not sufficiently explored. Interest in aerogels has increased greatly in recent decades due to their special properties, such as high surface area, excellent thermal and acoustic properties, low density and thermal conductivity, high porosity, flame resistance and humidity, and low refractive index and dielectric constant. On the other hand, high manufacturing costs and poor mechanical strength limit the growth of the market. (2) Results: In this paper, we analyze more than 180 articles from recent literature studies focused on the dynamics of aerogels research to summarize the technologies used in manufacturing and the properties of materials based on natural polymers from renewable sources. Biomedical applications of these bio-based materials are also introduced. (3) Conclusions: Due to their complementary functionalities (bioactivity, biocompatibility, biodegradability, and unique chemistry), bio-based materials provide a vast capability for utilization in the field of interdisciplinary and multidisciplinary scientific research.
Collapse
|
14
|
Wei S, Ching YC, Chuah CH. Synthesis of chitosan aerogels as promising carriers for drug delivery: A review. Carbohydr Polym 2020; 231:115744. [DOI: 10.1016/j.carbpol.2019.115744] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/10/2019] [Accepted: 12/14/2019] [Indexed: 12/12/2022]
|
15
|
Al-Azmi A, Keshipour S. Cross-linked chitosan aerogel modified with Pd(II)/phthalocyanine: Synthesis, characterization, and catalytic application. Sci Rep 2019; 9:13849. [PMID: 31554829 PMCID: PMC6761259 DOI: 10.1038/s41598-019-50021-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/23/2019] [Indexed: 02/07/2023] Open
Abstract
Palladium(II) phthalocyanine (PdPc) tetrasulfonate was chemically bonded to an amine moiety of chitosan aerogel. The reaction was promoted by the transformation of sulfonic acid groups of PdPc to sulfonyl chloride, which is highly active for amination. The porous composite showed good catalytic activity in the oxidation reaction of some alkylarenes, aliphatic and benzylic alcohols, and cyclohexanol. High conversions and excellent selectivities were obtained for the solvent-free reactions under aerobic conditions at 80 °C during 24 h. While many oxidation reactions have been reported catalysed with palladium phthalocyanine, this is the first reported oxidation of alkylarenes via this catalyst. The organometallic compound is applicable as a heterogeneous catalyst having high chemical stability with recyclability up to six times.
Collapse
Affiliation(s)
- Amal Al-Azmi
- Chemistry Department, Kuwait University, P. O. Box 5969, Safat, 13060, Kuwait.
| | - Sajjad Keshipour
- Department of Nanochemistry, Nanotechnology Research Center, Urmia University, Urmia, Iran
| |
Collapse
|
16
|
Gurikov P, S. P. R, Griffin JS, Steiner SA, Smirnova I. 110th Anniversary: Solvent Exchange in the Processing of Biopolymer Aerogels: Current Status and Open Questions. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02967] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Pavel Gurikov
- Hamburg University of Technology, Institute of Thermal Separation Processes, Eißendorfer Str. 38, 21073 Hamburg, Germany
| | - Raman S. P.
- Hamburg University of Technology, Institute of Thermal Separation Processes, Eißendorfer Str. 38, 21073 Hamburg, Germany
| | - Justin S. Griffin
- Aerogel Technologies, LLC 1 Westinghouse Plaza, D157, Boston, Massachusetts 02136, United States of America
| | - Stephen A. Steiner
- Aerogel Technologies, LLC 1 Westinghouse Plaza, D157, Boston, Massachusetts 02136, United States of America
| | - Irina Smirnova
- Hamburg University of Technology, Institute of Thermal Separation Processes, Eißendorfer Str. 38, 21073 Hamburg, Germany
| |
Collapse
|
17
|
Takeshita S, Sadeghpour A, Malfait WJ, Konishi A, Otake K, Yoda S. Formation of Nanofibrous Structure in Biopolymer Aerogel during Supercritical CO 2 Processing: The Case of Chitosan Aerogel. Biomacromolecules 2019; 20:2051-2057. [PMID: 30908038 DOI: 10.1021/acs.biomac.9b00246] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Supercritical drying is widely considered as the gold standard to produce aerogels that preserve the microstructure of the gels, but we have found this is not always the case. Chitosan aerogel, one of the emerging biopolymer aerogels, was prepared by chemical cross-linking gelation, followed by solvent exchange with methanol and supercritical drying using CO2. Small-angle X-ray scattering analysis shows that the structure of the wet gel, which consists of Gaussian chains of individual molecular strands, converts into a nanofibrous network during CO2 processing. In situ observation reveals a drastic shrinkage of the gel in CO2, demonstrating that physical coagulation caused by the low affinity between chitosan and CO2 is the main structure-forming step. These results challenge the common perception of supercritical drying: it is no longer an inactive drying method, but rather an active nanostructure forming a tool to produce porous biopolymer materials with tailored structure and properties.
Collapse
Affiliation(s)
- Satoru Takeshita
- Research Institute for Chemical Process Technology , National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba 3058565 , Japan
| | - Amin Sadeghpour
- Center for X-ray Analytics , Empa, Swiss Federal Laboratories for Materials Science and Technology , St. Gallen CH-9014 , Switzerland
| | - Wim J Malfait
- Laboratory for Building Energy Materials and Components , Empa, Swiss Federal Laboratories for Materials Science and Technology , Dübendorf CH-8600 , Switzerland
| | - Arata Konishi
- Department of Industrial Chemistry , Tokyo University of Science , Tokyo 1628601 , Japan
| | - Katsuto Otake
- Department of Industrial Chemistry , Tokyo University of Science , Tokyo 1628601 , Japan
| | - Satoshi Yoda
- Research Institute for Chemical Process Technology , National Institute of Advanced Industrial Science and Technology (AIST) , Tsukuba 3058565 , Japan
| |
Collapse
|