1
|
Basha B, Manzoor A, Alrowaili ZA, Ihsan A, Shakir I, Al-Buriahi MS. Ba 2-xHo xSr 2-yNi yFe 12O 22 and its composite with MXene: synthesis, characterization and enhanced visible light mediated photocatalytic activity for colored dye and pesticide. RSC Adv 2023; 13:29944-29958. [PMID: 37842667 PMCID: PMC10571018 DOI: 10.1039/d3ra05993f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023] Open
Abstract
The rapid recombination of charges of photogenerated electrons and holes severely limits single semiconductor photocatalytic applications. In this study, a simple and facile sol-gel approach was used to synthesize Ba2-xHoxSr2-yNiyFe12O22 (x = 0, 0.1 and y = 0, 0.5). The composite of holmium-nickel doped barium-strontium ferrite with MXene (Ba1.9Ho0.1Sr1.5Ni0.5Fe12O22@MXene) was synthesized by ultrasonication method. These synthesized samples were subsequently used to photodegrade rhodamine B (RhB) and pendimethalin under visible light illumination. The results of the experiments demonstrated that MXene, as a cocatalyst, considerably reduces the rate of recombination of charges and broadens absorption of visible light by providing increased surface functional groups to improve the photocatalytic activity of synthesized samples. MXene is thermally stable, have high electrical conductivity, have adjustable bandgap, and hydrophilic in nature. The optimized Ba1.9Ho0.1Sr1.5Ni0.5Fe12O22@MXene composite demonstrated an excellent photocatalytic rate by degrading 78.88% RhB and 75.59% pendimethalin in 140 minutes. Moreover, the scavenging experiment revealed that photogenerated electrons and holes were the primary active species involved in RhB and pendimethalin photodegradation, respectively. Ba1.9Ho0.1Sr1.5Ni0.5Fe12O22@MXene showed increased photocatalytic behavior because it has increased surface area which decreases rate of recombination of electron and hole pair, hence photocatalytic activity increases. It is observed that Ba1.9Ho0.1Sr1.5Ni0.5Fe12O22@MXene has potential application in photocatalytic degradation of harmful pollutants.
Collapse
Affiliation(s)
- Beriham Basha
- Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University P. O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Alina Manzoor
- Department of Physics, Government College University Faisalabad 38000 Punjab Pakistan
| | - Z A Alrowaili
- Department of Physics, College of Science, Jouf University P. O. Box 2014 Sakaka Saudia Arabia
| | - Ayesha Ihsan
- Institute of Chemistry, The Islamia University of Bahawalpur Baghdad-ul-Jadeed Campus Bahawalpur 63100 Pakistan
| | - Imran Shakir
- Department of Physics, Faculty of Science, Islamic University of Madinah Madinah 42351 Saudi Arabia
- Department of Materials Science and Engineering, University of California Los Angeles USA
| | - M S Al-Buriahi
- Department of Physics, Sakarya University Sakarya Turkey
| |
Collapse
|
2
|
Rattanaburi P, Nuengmatcha P, Pimsen R, Porrawatkul P. Photocatalytic degradation of organic dyes on magnetically separable barium hexaferrite as photocatalyst under conditions of visible light irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:68969-68986. [PMID: 37129818 DOI: 10.1007/s11356-023-27331-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
In this paper, we present the first attempt to evaluate the role of carboxymethyl cellulose (CMC) as a chelating agent in the sol-gel auto-combustion method of producing barium hexaferrite (BaFe12O19). We also report the application of the system as a photocatalyst for dye degradation. The formation, morphology, and crystalline structure of the synthesized nanoparticles are determined using XRD, SEM, EDS, VSM, FTIR, and TEM techniques. High efficiency under visible light, with a band gap of 1.62 eV and a BET surface of 17.93 m2/g, has been observed for the BaFe12O19 catalyst. The operating parameters, such as reaction time, initial dye concentration, light intensity, reusability, and dye type, are studied. Degradation rates as high as 98.26% (Kapp = 0.082 min-1) and 89.07% (Kapp = 0.0743 min-1) were obtained for cases of methylene blue and malachite green under conditions of visible light irradiations when BaFe12O19 was used. The BaFe12O19 catalyst has been shown to exhibit a high degradation performance for cationic dyes. Furthermore, BaFe12O19 magnetic nanoparticles show excellent reusability for dye degradation because the photocatalyst did not exhibit a significant decrease in its activity even after five runs (81.56%). As a result, the current study confirmed that photocatalytic degradation was a promising technology for saving water and treating wastewater formed from textile dye industries. The technique can be used to study the efficiency of photocatalytic degradation and understand the process of recycling waste effluents under conditions of minimized water use.
Collapse
Affiliation(s)
- Parintip Rattanaburi
- Creative Innovation in Science and Technology, Faculty of Science and Technology, Nakhon Si Thammarat Rajabhat University, Nakhon Si Thammarat, 80280, Thailand
| | - Prawit Nuengmatcha
- Creative Innovation in Science and Technology, Faculty of Science and Technology, Nakhon Si Thammarat Rajabhat University, Nakhon Si Thammarat, 80280, Thailand.
- Department of Chemistry, Faculty of Science and Technology, Nanomaterials Chemistry Research Unit, Nakhon Si Thammarat Rajabhat University, Nakhon Si Thammarat, 80280, Thailand.
| | - Rungnapa Pimsen
- Department of Chemistry, Faculty of Science and Technology, Nanomaterials Chemistry Research Unit, Nakhon Si Thammarat Rajabhat University, Nakhon Si Thammarat, 80280, Thailand
| | - Paweena Porrawatkul
- Department of Chemistry, Faculty of Science and Technology, Nanomaterials Chemistry Research Unit, Nakhon Si Thammarat Rajabhat University, Nakhon Si Thammarat, 80280, Thailand
| |
Collapse
|
3
|
Zhang T, Zhou P, Zhang L, Xia C, Xie M, Guo Q, Chen M, Yuan J, Li X, Xu Y. Construction lamellar BaFe 12O 19/Bi 3.64Mo 0.36O 6.55 photocatalyst for enhanced photocatalytic activity via a photo-Fenton-like Mo 6+/Mo 4+redox cycle. CHEMOSPHERE 2022; 307:135909. [PMID: 35940412 DOI: 10.1016/j.chemosphere.2022.135909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/14/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
The novel BaFe12O19/Bi3.64Mo0.36O6.55 composite materials were constructed as magnetically recyclable photo-Fenton-like degradation systems. The composite catalyst not only promoted the effective transfer of photo-generated electrons and improved the Mo6+/Mo4+ cycle consequent, but also activated hydrogen peroxide to generate oxidizing free radicals. BaFe12O19/Bi3.64Mo0.36O6.55-0.25 exhibited an outstanding degradation performance for tetracycline hydrochloride it is 1.3 times to Bi3.64Mo0.36O6.55. The thermal catalytic performance of the Bi3.64Mo0.36O6.55 monomer is similar to that of the BaFe12O19/Bi3.64Mo0.36O6.55 material without light. However, the removal rate of BaFe12O19/Bi3.64Mo0.36O6.55 material reaches 84.5% after 60 min with light, far exceeding that of Bi3.64Mo0.36O6.55 material. By way of the contrast experiment with light and without light, it is further demonstrated that interfacial interaction between BaFe12O19 and Bi3.64Mo0.36O6.55 acted a key role in the photocatalytic reaction system. It is also a good advantage that pollutants can be efficiently degraded without adjusting the pH. The characterization of photocurrent and X-ray photoelectron spectroscopy (XPS) also further proved the synergy between the two materials, which is useful to the separation of electrons and holes. The synergy ultimately improves the degradation performance. Besides, BaFe12O19/Bi3.64Mo0.36O6.55 can be easily separated by an external magnetic field after the photocatalytic activity reaction owing to BaFe12O19's magnetic properties. It provides a new research idea for the construction and iron-based heterogeneous Fenton-like system for magnetic degradation of antibiotics.
Collapse
Affiliation(s)
- Tingting Zhang
- School of Chemistry and Chemical Engineering, School of Pharmacy, School of Agricultural Equipment Engineering Institute of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Puyang Zhou
- School of Chemistry and Chemical Engineering, School of Pharmacy, School of Agricultural Equipment Engineering Institute of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Lingxiao Zhang
- School of Chemistry and Chemical Engineering, School of Pharmacy, School of Agricultural Equipment Engineering Institute of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Changkun Xia
- School of Chemistry and Chemical Engineering, School of Pharmacy, School of Agricultural Equipment Engineering Institute of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Meng Xie
- School of Chemistry and Chemical Engineering, School of Pharmacy, School of Agricultural Equipment Engineering Institute of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Qiting Guo
- School of Chemistry and Chemical Engineering, School of Pharmacy, School of Agricultural Equipment Engineering Institute of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Min Chen
- School of Chemistry and Chemical Engineering, School of Pharmacy, School of Agricultural Equipment Engineering Institute of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Junjie Yuan
- School of Chemistry and Chemical Engineering, School of Pharmacy, School of Agricultural Equipment Engineering Institute of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Xiang Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, PR China.
| | - Yuanguo Xu
- School of Chemistry and Chemical Engineering, School of Pharmacy, School of Agricultural Equipment Engineering Institute of Agricultural Engineering, Jiangsu University, Zhenjiang, 212013, PR China.
| |
Collapse
|
4
|
Yadav K, Raut SS, Patro TU, Abhyankar AC, Kulkarni PS. Annealing Temperature- and Morphology-Controlled Development of Nickel Cobaltite Nanoneedles for Photocatalytic Degradation of Nitroaromatics. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c05046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kaumudi Yadav
- Department of Metallurgical & Materials Engineering, Ministry of Defence, Defence Institute of Advanced Technology (DU), Pune 411 025, India
| | - Sandesh S. Raut
- Energy and Environment Laboratory, Department of Applied Chemistry, Ministry of Defence, Defence Institute of Advanced Technology (DU), Pune 411 025, India
| | - T. Umasankar Patro
- Department of Metallurgical & Materials Engineering, Ministry of Defence, Defence Institute of Advanced Technology (DU), Pune 411 025, India
| | - Ashutosh C. Abhyankar
- Department of Metallurgical & Materials Engineering, Ministry of Defence, Defence Institute of Advanced Technology (DU), Pune 411 025, India
| | - Prashant S. Kulkarni
- Energy and Environment Laboratory, Department of Applied Chemistry, Ministry of Defence, Defence Institute of Advanced Technology (DU), Pune 411 025, India
| |
Collapse
|
5
|
Application of Spinel and Hexagonal Ferrites in Heterogeneous Photocatalysis. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112110160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Semiconducting materials display unique features that enable their use in a variety of applications, including self-cleaning surfaces, water purification systems, hydrogen generation, solar energy conversion, etc. However, one of the major issues is separation of the used materials from the process suspension. Therefore, chemical compounds with magnetic properties have been proposed as crucial components of photocatalytic composites, facilitating separation and recovery of photocatalysts under magnetic field conditions. This review paper presents the current state of knowledge on the application of spinel and hexagonal ferrites in heterogeneous photocatalysis. The first part focuses on the characterization of magnetic (nano)particles. The next section presents the literature findings on the single-phase magnetic photocatalyst. Finally, the current state of scientific knowledge on the wide variety of magnetic-photocatalytic composites is presented. A key aim of this review is to indicate that spinel and hexagonal ferrites are considered as an important element of heterogeneous photocatalytic systems and are responsible for the effective recycling of the photocatalytic materials.
Collapse
|
6
|
Raut SS, Kamble SP, Kulkarni PS. Improved photocatalytic efficiency of TiO 2 by doping with tungsten and synthesizing in ionic liquid: precise kinetics-mechanism and effect of oxidizing agents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:17532-17545. [PMID: 33400106 DOI: 10.1007/s11356-020-12107-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
The degradation of nitroaromatics/toxic energetic compounds contaminated water is a major cause of concern. W-doped TiO2 nanoparticles (NPs) were synthesized in ionic liquid, ethyl methyl imidazolium dicyanamide (EMIM-DCA) by a solvothermal method. The developed NPs were sintered at 500 °C and characterized by UV-Vis-DRS, FT-IR, FE-SEM, XRD, XPS, and BET techniques. The 30-40-nm-sized NPs were subjected to photocatalytic degradation of the toxic energetic compound, tetryl (2,4,6-trinitrophenylmethylnitramine) under UV-Vis light. Various operating parameters such as the effect of concentration of catalyst, pH of feed phase, oxidizing agents, and recycling of catalyst were studied in detail. For the first time, the degradation-mechanism pathway and kinetics of tetryl were evaluated. The degradation products were precisely analyzed by using HPLC, GC-MS, and TOC techniques. The USEPA has prescribed a drinking water limit of 0.02 mg L-1, and it was found that 0.5 g of 4% W-TiO2 could totally degrade tetryl (50 mg L-1) within 8 h. The kinetic rate constant of 4% W-TiO2 was 0.356 h-1, whereas pure TiO2 showed 0.207 h-1.
Collapse
Affiliation(s)
- Sandesh S Raut
- Energy and Environment Laboratory, Department of Applied Chemistry, Defence Institute of Advanced Technology (DU), Ministry of Defence, Pune, 411025, India
| | - Sanjay P Kamble
- Chemical Engineering and Process Development Division, National Chemical Laboratory (NCL), CSIR, Pune, 411008, India
| | - Prashant S Kulkarni
- Energy and Environment Laboratory, Department of Applied Chemistry, Defence Institute of Advanced Technology (DU), Ministry of Defence, Pune, 411025, India.
| |
Collapse
|